Skip to main content
Log in

Sensitivity of the two-dimensional electric potential/resistance method for damage monitoring in carbon fiber polymer-matrix composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The two-dimensional electric potential/resistance method is much less sensitive than the one-dimensional resistance method for damage monitoring in carbon fiber polymer-matrix composite. In the two-dimensional method, the resistance measurement is more sensitive than the potential gradient measurement. The sensitivity of the potential method is enhanced when the potential gradient line is close to the current line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chung DDL (2003) Composite materials. Springer

  2. Stewart A, Carman G, Richards L (2003) J Compos Mater 37(24):2197

    Article  CAS  Google Scholar 

  3. Wevers M, Rippert L, Van Huffel S (2000) J Acoustic Emission 18:41

    CAS  Google Scholar 

  4. Tsutsui H, Kawamata A, Kimoto J, Sanda T, Takeda N (2002) Proceedings of the SPIE—the international society for optical engineering, vol 4698, Industrial and Commercial Applications of Smart Structures Technologies, 454 pp

  5. Sohn H, Park G, Wait JR, Limback NP, Farrar CR (2004) In: Chang F-K, Yun CB, Spencer BF, Jr (eds) Advanced smart materials and smart structures technology, International Workshop, DEStech Publications, Inc., Lancaster, PA, pp 198–205

  6. Park J-M, Kong J-W, Kim D-S, Yoon D-J (2005) Compos Sci Technol 65(2):241

    Article  CAS  Google Scholar 

  7. Kessler SS, Spearing SM (2004) Materials Research Society Symposium Proceedings, vol 785 (Materials and Devices for Smart Systems) p 365

  8. Mook G, Pohl J, Michel F (2003) Smart Mater Struct 12(6):997

    Article  CAS  Google Scholar 

  9. Grandia WA (1994) International SAMPE Symposium and Exhibition, vol 39 (Moving Forward with 50 Years of Leadership) p 1308

  10. Aymerich F, Meili S (2000) Compos Part B—Eng 31B(1):1

    Article  CAS  Google Scholar 

  11. Edwards C, Stratoudaki T, Dixon S, Palmer SB (2000) Proc SPIE—Int Soc Optical Eng 3993:268

    CAS  Google Scholar 

  12. Gause LW, Buckley LJ (1987) ASTM Special Technical Publication 936 (Instrum. Impact Test. Plast. Compos. Mater.) p 248

  13. Wang S, Chung DDL, Chung JH (2005) J Mater Sci 40(2):561

    Article  CAS  Google Scholar 

  14. Wang S, Chung DDL (2005) J Mater Sci 40:1863

    Article  CAS  Google Scholar 

  15. Wang S, Chung DDL, Chung JH (2005) Compos Part A—Appl S 36:1707

    Article  Google Scholar 

  16. Wang S, Chung DDL, Chung JH (2006) J Int Mat Syst Str 17(1):57

    Article  CAS  Google Scholar 

  17. Wang S, Chung DDL, Chung JH (in press) J Mater Sci

  18. Wang X, Chung DDL (1997) Polym Compos 18(6):692

    Article  CAS  Google Scholar 

  19. Wang X, Chung DDL (1999) J Mater Res 14(11):4224

    Article  CAS  Google Scholar 

  20. Wang X, Chung DDL (1997) Smart Mater Struct 6:504

    Article  Google Scholar 

  21. Wang X, Wang S, Chung DDL (1999) J Mater Sci 34(11):2703

    Article  CAS  Google Scholar 

  22. Wang S, Chung DDL (2001) Polym Polym Compos 9(2):135

    CAS  Google Scholar 

  23. Wang S, Chung DDL (2002) Compos Interface 9(1):51

    Article  Google Scholar 

  24. Chung DDL, Wang S (2003) Polym Polym Compos 11(7):515

    CAS  Google Scholar 

  25. Yoshitake K, Shiba K, Suzuki M, Sugita M, Okuhara Y (2004) Proc SPIE—Int Soc Optical Eng 5384:89

    Google Scholar 

  26. Kupke M, Schulte K, Schüler R (2001) Compos Sci Technol 61:837

    Article  CAS  Google Scholar 

  27. Schulte K (1993) J Phys IV, Colloque C7 3:1629

    CAS  Google Scholar 

  28. Schulte K, Baron CH (1989) Compos Sci Technol 36:63

    Article  CAS  Google Scholar 

  29. Kaddour AS, Al-Salehi FAR, Al-Hassani STS, Hinton MJ (1994) Compos Sci Technol 51(3):377

    Article  Google Scholar 

  30. Ceysson O, Salvia M, Vincent L (1996) Scripta Mater 34(8):1273

    Article  CAS  Google Scholar 

  31. Muto N, Yanagida H, Miyayama M, Nakatsuji T, Sugita M, Ohtsuka Y (1992) J Ceram Soc Jpn 100(4):585

    Article  CAS  Google Scholar 

  32. Muto N, Yanagida H, Nakatsuji T, Sugita M, Ohtsuka Y, Arai Y, Saito C (1995) Adv Compos Mater 4(4):297

    Article  CAS  Google Scholar 

  33. Muto N, Yanagida H, Nakatsuji T, Sugita M, Ohtsuka Y, Arai Y (1992) Smart Mater Struct 1:324

    Article  CAS  Google Scholar 

  34. Abry JC, Bochard S, Chateauminois A, Salvia M, Giraud G (1999) Compos Sci Technol 59:925

    Article  Google Scholar 

  35. Prabhakaran R (1990) Exp Techniq 14(1):16

    Article  Google Scholar 

  36. Todoroki A, Yoshida J (2004) JSME Int J A 47(3):357

    Article  CAS  Google Scholar 

  37. TodorokiA, Ueda M (2005) Proc SPIE—Int Soc Optical Eng 5648(Smart Materials III) p 46

  38. Todoroki A, Tanaka M, Shimamura Y, Kobayashi H (2002) In: Chang F-K (ed) Proc. of the U.S.–Japan Conference on Composite Materials, 10th edn., DEStech Publications, Inc., Lancaster, PA, pp 155–161

  39. Todoroki A, Tanaka Y, Shimamura Y (2002) In: Chang F-K (ed) Proc. of the U.S.–Japan Conference on Composite Materials, 10th edn., DEStech Publications, Inc., Lancaster, PA, pp 207–214

  40. Irving PE, Thiagarajan C (1998) Smart Mater Struct 7:456

    Article  CAS  Google Scholar 

  41. Todoroki A, Tanaka M, Shimamura Y (2005) Compos Sci Technol 65:37

    Article  CAS  Google Scholar 

  42. Chu Y-W, Yum Y-J (2001) Proc.—KORUS 2001, the Korea–Russia International Symposium on Science and Technology, 5th edn.., vol 5(Mechanical and Automotive Engineering) p 240

  43. Todoroki A, Kobayashi H, Matuura K (1995) JSME Int J A—Solid M 38(4):524

    Google Scholar 

  44. Hou L, Hayes SA (2002) Smart Mater Struct 11:966

    Article  Google Scholar 

  45. Abry JC, Choi YK, Chateauminois A, Dalloz B, Giraud G, Salvia M (2001) Compos Sci Technol 61:855

    Article  CAS  Google Scholar 

  46. Wang S, Chung DDL, Chung JH (2005) J Mater Sci 40:6463

    Article  CAS  Google Scholar 

  47. Masson LC, Irving PE (2000) Proc. of SPIE—the International Society for Optical Engineering vol 4073(Smart Structures and Materials) p 182

  48. Todoroki A, Tanaka Y, Shimamura Y (2004) Compos Sci Technol 64:749

    Article  CAS  Google Scholar 

  49. Angelidis N, Khemiri N, Irving PE (2005) Smart Mater Struct 14:147

    Article  Google Scholar 

  50. Anderson T, Lemoine G, Ambur D, 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-2003-1997, Norfolk, VA

  51. Wang S, Chung DDL, Chung JH (in press) J Int Mat Syst Str

  52. Liu N, Penny JET, Wei CY, Irving PE, Dykes N, Zhu QM (2001) Key Eng Mater 204–205(Damage Assessment of Structures) p 395

Download references

Acknowledgement

This work was supported in part by U.S. National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Wang, S., Chung, D.D.L. et al. Sensitivity of the two-dimensional electric potential/resistance method for damage monitoring in carbon fiber polymer-matrix composite. J Mater Sci 41, 4839–4846 (2006). https://doi.org/10.1007/s10853-006-0062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0062-3

Keywords

Navigation