Skip to main content
Log in

Effect of Ni loading and reaction temperature on the formation of carbon nanotubes from methane catalytic decomposition over Ni/SiO2

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Since their discovery carbon nanotubes (CNT) have attracted much attention due to their singular physical, mechanical and chemical properties. Catalytic chemical vapor deposition (CCVD) of hydrocarbons over metal catalysts is the most promising method for the synthesis of CNT, because of the advantages of low cost and large-scale production and the relatively low temperature used in the process, compared to the other methods (laser ablation and discharge between graphite electrodes). In this study, CNT were synthesized by CCVD using Ni supported on SiO2 as a catalyst. The carbon deposited in the reaction was analyzed by Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of reaction temperature and Ni loading on the carbon nanotube formation were evaluated. The catalyst with 5% Ni favored high yield of CNT at lower temperature, with abundant “multi-walled carbon nanotubes” (MWNTs) at 625 °C, while single-walled carbon nanotubes (SWNTs) and MWNTs were obtained at 650 °C. With an increase in the reaction temperature a marked decrease in the yield of CNT was observed, probably due to the sintering of the catalyst. The catalyst with 1% Ni gave SWNTs with a high degree of order at all reaction temperatures, but in low quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Nature 363:603

    Article  CAS  Google Scholar 

  3. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Chem Phys Lett 243:49

    Article  CAS  Google Scholar 

  4. Kong J, Cassel AM, Dai H (1998) Chem Phys Lett 292:4

    Article  Google Scholar 

  5. Dai HX, Rinzler P, Nikolacv P, Thess A, Colbert DT, Smalley RE (1996) Chem Phys Lett 260:471

    Article  CAS  Google Scholar 

  6. Colomer JF, Bister G, Willems I, Konya Z, Fonseca A, Van Tendeloo G, Nagy JB (1999) Chem Commun 1343

  7. Peigney A, Laurent Ch, Dobigcon F, Roussel A (1997) J Mater Res 12:613

    Article  CAS  Google Scholar 

  8. Kong J, Cassel AM, Dai H (1998) Chem Phys Lett 292:567

    Article  CAS  Google Scholar 

  9. Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith KA, Smalley RE (1998) Chem Phys Lett 296:195

    Article  CAS  Google Scholar 

  10. Cassel AM, Kong JA, Dai HJ (1999) Phys Chem B103:6484

    Google Scholar 

  11. Colomer JF, Stephan C, Lefrant S, Van Tendeloo G, Willems I, Kónya Z, Fonseca A, Laurent C, Nagy JB (2000) Chem Phys Lett 317:83

    Article  CAS  Google Scholar 

  12. Li Q, Yan H, Zhang J, Liu Z (2004) Carbon 42:829

    Article  CAS  Google Scholar 

  13. Shajahan M, Mo YH, Kibria AKMF, Kim MJ, Nahm KS (2004) Carbon 42:2245

    Article  CAS  Google Scholar 

  14. Murakami Y, Yamakita S, Okubo T, Maruyama S (2003) Chem Phys Lett 375:393

    Article  CAS  Google Scholar 

  15. Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, Mcintyre P, Mceuen P, Lundstrom M, Dai H (2002) Nat Mater 1:241

    Article  CAS  Google Scholar 

  16. Seidel R, Liebau M, Duesberg BS, Kreupl F, Unger E, Graham AP, Hoenlein W, Pompe W (2003) Nanoletters 3:965

    Article  CAS  Google Scholar 

  17. Seidel R, Duesberg GS, Unger E, Graham AP, Liebau M, Kreupl F (2004) J Phys Chem B108:1888

    Article  Google Scholar 

  18. Tang S, Zhong Z, Xiong Z, Liu L, Lin J, Shen ZX, Tan KL (2001) Chem Phys Lett 350:19

    Article  CAS  Google Scholar 

  19. Kitiyanan B, Alvarez WE, Harwel JH, Resasco DE (2000) Chem Phys Lett 317:497

    Article  CAS  Google Scholar 

  20. Pimenta MA, Marucci A, Empedocles S, Bawendi M, Hanlon EB, Rao AM, Eklund PC, Smalley G, Dresselhaus RE, Dresselhaus MS (1998) Phys Rev B58:R16012

    Google Scholar 

  21. Alvarez L, Righi A, Guillard T, Rols S, Anglaret E, Laplaze D, Dauvajol JL (2000) Chem Phys Lett 316:186

    Article  CAS  Google Scholar 

  22. Liao H, Hafner JH (2004) J Phys Chem B108:6941

    Article  Google Scholar 

  23. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Chem Phys Lett 360:229

    Article  CAS  Google Scholar 

  24. Méhn D, Fonseca A, Bister G, Nagy JB (2004) Chem Phys Lett 393:378

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to CNPq, Prodoc CAPES, Laboratory of Molecular Spectroscopy of Chemistry Institute, São Paulo University for the utilization of Renishaw Raman System 3000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lúcia K. Noda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, L.K., Gonçalves, N.S., Valentini, A. et al. Effect of Ni loading and reaction temperature on the formation of carbon nanotubes from methane catalytic decomposition over Ni/SiO2 . J Mater Sci 42, 914–922 (2007). https://doi.org/10.1007/s10853-006-0009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0009-8

Keywords

Navigation