Skip to main content
Log in

Characterization of Bi-axial fatigue resistance of polymer plates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An approach is proposed to characterize bi-axial fatigue resistance of polymer plates. The method proposed here can detect a change of mechanical properties of polymers (especially ductility) due to fatigue loading, before any visible crack is generated. A decrease in ductility by fatigue loading has been reported for polymers subjected to uni-axial fatigue stresses. Whether a similar phenomenon occurs under bi-axial fatigue stresses is not known at present. In this study, a new bi-axial testing device was designed and built that is capable of applying equal bi-axial forces to cruciform specimens in a cyclic mode. This paper details the test method, including design and instrumentation of the bi-axial testing device, specimen design, and the procedure to determine the load for a desired bi-axial stress state. Poly(acrylonitrile-butadiene-styrene) (ABS) was used as the sample material. Preliminary results reported here show that the ABS’s ductility can be reduced significantly by applying 500 cycles of bi-axial fatigue stress at a level that is about 50% of its tensile strength. The results also indicate that such a level of bi-axial fatigue stress has induced extensive rubber particle cavitation, though it is yet to clarify whether the particle cavitation has led to the ductility drop. The study concludes that the methodology proposed in this paper can be used to evaluate bi-axial fatigue resistance of polymer plates for the purpose of materials evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Williams, in “Fracture Mechanics of Polymers” (Ellis Horwood, Chichester, England, 1984).

    Google Scholar 

  2. R. W. Hertzberg and A. Manson, in “Fatigue of Engineering Plastics” (Academic Press, New York, 1980).

    Google Scholar 

  3. H. M. Westergaard, J. Appl. Mech. 6 (1939) 49.

    Google Scholar 

  4. P. C. Paris and G. C. Sih, ASTM STP 381 (1964) 30.

    Google Scholar 

  5. S. P. Timosenko and J. M. Gere, in “Theory of Elastic Stability” (McGrawHill, New York, 1961) p. 357.

    Google Scholar 

  6. D. A. Kelly, J. Strain Anal. 11 (1976) 1.

    Google Scholar 

  7. C. D. Hopper and K. J. Miller, J. Strain Anal. 12 (1977) 23.

    Google Scholar 

  8. H. Kitagawa, R. Yuuki and K. Tohgo, Fatig. Eng. Mater. & Struct. 2 (1979) 195.

    Google Scholar 

  9. T. Hoshide and K. Tanaka, Fatig. Eng. Mater. & Struct. 4 (1981) 355.

    Google Scholar 

  10. S. R. Joshi and J. Shewchuk, Exper. Mech. 10 (1970) 529.

    Google Scholar 

  11. D. R. Hayhurst, J. Strain Anal. 8 (1973) 119.

    Google Scholar 

  12. E. W. Smith and K. J. Pascoe, Fatig. Eng. Mater. & Struct. 6 (1983) 201.

    Google Scholar 

  13. P. S. Leevers, J. C. Radon and L. E. Culver, Polym. 17 (1976) 627.

    Google Scholar 

  14. P. S. Leevers, L. E. Culver and J. C. Radon, Eng. Fract. Mech. 11 (1979) 487.

    Article  Google Scholar 

  15. A. G. Atkins, G. Jeronimidis and S. Arndt, J. Mater. Sci. 33 (1998) 4349.

    Article  Google Scholar 

  16. H. J. Kwon, P.-Y. B. Jar and Z. Xia, J. Mater. Sci. 39 (2004) 4821.

    Article  Google Scholar 

  17. P.-Y. B. Jar, K. Konishi and T. Shinmura, J. Mater. Sci. 37 (2002) 4521.

    Article  Google Scholar 

  18. R. Marissen, D. Schudy, A. V. J. M. Kemp, S. M. H. Coolen and W. G. Duijzings, J. Mater. Sci. 36 (2001) 4167.

    Article  Google Scholar 

  19. A. A. Lebedev and N. R. Muzyka, Strength of Mater. 30 (1998) 243.

    Google Scholar 

  20. R. S. Kody and A. J. Lesser, Polym. Comp. 20 (1999) 250.

    Google Scholar 

  21. S. Y. Zamrik and D. C. Davis, ASTM STP 1191 (1993) 204.

    Google Scholar 

  22. A. Makinde, L. Thibodeau and K. W. Neale, Exper. Mech. 32 (1992) 138.

    Google Scholar 

  23. Y. Youssef, S. Labonte, C. Roy and D. Lefebvre, Sci. & Eng. Comp. Mater. 3 (1994) 259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, H.J., Jar, PY.B. & Xia, Z. Characterization of Bi-axial fatigue resistance of polymer plates. J Mater Sci 40, 965–972 (2005). https://doi.org/10.1007/s10853-005-6515-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6515-2

Keywords

Navigation