Journal of Materials Science

, Volume 40, Issue 2, pp 285–293 | Cite as

The morphology and topography of polymer surfaces and interfaces exposed by ultra-low-angle microtomy

  • S. J. Hinder
  • C. Lowe
  • J. T. Maxted
  • J. F. Watts


The ultra-low-angle microtomy (ULAM) technique has been developed to impart a cross-sectional, ultra-low-angle taper through polymeric materials such as coatings and paints. ULAM employs a conventional rotary microtome in combination with high-precision, angled sectioning blocks to fabricate the ultra-low-angle tapers. Subsequent investigation of the tapers produced by ULAM may be used in conjunction with X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS), for compositional depth profiling or ‘buried’ interface analysis. Variation in the selection of the ULAM taper angle and/or the analysis interval size employed enables depth resolution at the nanometre or micrometre scales to be achieved.

In the work described here scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been employed to investigate the morphology and topography of the surfaces resulting from the ULAM tapering process. It is demonstrated that a correctly mounted polymeric sample, sectioned with a sharp microtome knife, displays little perturbation of the resulting polymeric surface after ULAM processing. Additionally, SEM analysis of the interface region between a poly(vinylidene fluoride) (PVdF) topcoat and polyurethane (PU) primer exposed by ULAM processing reveals that the interface region between the two coatings possesses a well-defined boundary. No evidence of polymeric smearing across the interface is observed. XPS compositional depth profiling across a buried’ PVdF/PU interface, exposed by ULAM processing, is employed to demonstrate the utility of the ULAM technique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. CUMPSON, J. Electr. Spectr. Relat. Phenom. 73 (1995); C. PERRUCHOT, J. F. WATTS, C. LOWE, R. G. WHITE, and P. J. CUMPSON, Surf. Interf. Anal. 33 (2002) 10.Google Scholar
  2. 2.
    G. J. ROSS, N. P. BARRADAS, M. P. HILL, C. JEYNES, P. MORRISSEY and J. F. WATTS, J. Mater. Sci. 36 (2001) 4731.Google Scholar
  3. 3.
    S. GIROIS, L. AUDOUIN, J. VERDU, P. DELPRAT and G. MAROT, Polym. Degrad. Stab. 51 (1996) 125.Google Scholar
  4. 4.
    C. ANTON-PRINET, J. DUBOIS, G. MUR, M. GAY, L. AUDOUIN and J. VERDU, ibid. 60 (1996) 125.Google Scholar
  5. 5.
    K. ADAMSON, Prog. Org. Coat. 45 (2002) 69.Google Scholar
  6. 6.
    J. M. WALLS, D. D. HALL and D. E. SYKES, Surf. Interf. Anal. 1 (1979) 204.Google Scholar
  7. 7.
    J. M. WALLS, Thin Solid Films 80 (1981) 213.Google Scholar
  8. 8.
    M. L. TARNG and D. G. FISHER, J. Vac. Sci. Technol. 15 (1978) 50.Google Scholar
  9. 9.
    H. E. HINTERMANN and L. CHOLLET, Surf. Techn. 8 (1979) 421.Google Scholar
  10. 10.
    C. LEA and M. P. SEAH, Thin Solid Films 75 (1981) 67.Google Scholar
  11. 11.
    J. M. COHEN and J. E. CASTLE, Inst. Phys. Conf. Ser. No 93 (1988) Chapt. 5 275.Google Scholar
  12. 12.
    M. GUICHENUY, J. F. WATTS, M.-L. ABEL, A. M. BROWN, M. AUDENAERT and N. AMOUROUX, Accepted for publication in Surf. Interf. Anal. Aug. 2004.Google Scholar
  13. 13.
    S. J. HINDER, J. F. WATTS and C. LOWE, Accepted for publication in Surf. Interf. Anal. Aug. 2004.Google Scholar
  14. 14.
    M. C. PORTE-DURRIEU, C. AYMES-CHODUR, C. VERGNE, N. BETZ and C. BAQUEY, Nucl. Instr. Meth. Phys. Res. B 151 (1999) 404.Google Scholar
  15. 15.
    N. CHEN and L. HONG, Polymer 43 (2002) 1429.Google Scholar
  16. 16.
    M. D. DUCA, C. L. PLOSCEANU and T. POP, Polym. Degrad. Stab. 61(1998) 65.Google Scholar
  17. 17.
    T.-W. CHUNG, D.-Z. LIU, S.-Y. WANG and S.-S. Wang, Biomaterials 24 (2003) 4655.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. J. Hinder
    • 1
  • C. Lowe
    • 2
  • J. T. Maxted
    • 2
  • J. F. Watts
    • 3
  1. 1.The Surface Analysis Laboratory, School of EngineeringUniversity of SurreyGuildfordUK
  2. 2.Becker Industrial Coatings Ltd.SpekeUK
  3. 3.The Surface Analysis Laboratory, School of EngineeringUniversity of SurreyGuildfordUK

Personalised recommendations