Advertisement

Journal of Materials Science

, Volume 41, Issue 1, pp 177–198 | Cite as

Solid freeform fabrication of piezoelectric sensors and actuators

  • A. SafariEmail author
  • M. Allahverdi
  • E. K. Akdogan
Article

Abstract

The last two decades have witnessed the proliferation piezoelectric composite transducers for an array of sensor and actuator applications. In this article, a concise summary of the major methods used in composite making, with special emphasis on Solid Freeform Fabrication (SFF), is provided. Fused Deposition of Ceramics (FDC) and Sanders Prototyping (SP) are two SFF techniques that have been utilized to make a variety of novel piezocomposites with connectivity patterns including (1-3), (3-2), (3-1), (2-2) and (3-3). The FDC technique has also been used to prototype a number of actuators such as tube arrays, spiral, oval, telescoping, and monomorph multi-material bending actuators. It has been demonstrated that SFF technology is a viable option for fabricating piezocomposite sensors and actuators with intricate geometry, unorthodox internal architecture, and complex symmetry. The salient aspects of processing of such composite sensors and actuators are summarized, and structure-processing-property relations are elaborated on.

Keywords

Injection Molding Piezoelectric Actuator Piezoelectric Ceramic Connectivity Pattern Solid Freeform Fabrication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. UCHINO, in “Piezoelectric Actuators and Ultrasonic Motors” (Kluwer Academic Publisher, New York, 1996).Google Scholar
  2. 2.
    B. JAFFE, W. R. COOK and H. JAFFE, in “Piezoelectric Ceramics” (R.A.N. Publishers, Marietta, Ohio, 1971).Google Scholar
  3. 3.
    Y. XU, in “Ferroelectric Materials and Their Applications” (North-Holland, Amsterdam, 1991).Google Scholar
  4. 4.
    L. E. CROSS, in “Ferroelectric ceramics: Tailoring properties for specific applications,” edited by N. Setter and E. L. Colla. (Birkhauser, Basel, 1993).Google Scholar
  5. 5.
    G. GOODMAN, J. Amer. Ceram. Soc. 36 (1960) 368.CrossRefGoogle Scholar
  6. 6.
    E. C. SUBBARAO, ibid. 43 (1960) 439.CrossRefGoogle Scholar
  7. 7.
    G. Y. XU, Z. ZHONG, Y. BING, Z. G. YE, C. STOCK and G. SHIRANE, Phys. Rev. B 67 (2003) 104102.Google Scholar
  8. 8.
    Z. G. YE, Y. BING, J. GAO, A. A. BOKOV, P. STEPHENS, B. NOHEDA and G. SHIRANE, Phys. Rev. B 67 (2003) 104104.Google Scholar
  9. 9.
    H. M. JI, Z. BING and M. X. XU, Rare Metal Mater. Eng. 31 (2002) 292.Google Scholar
  10. 10.
    Y. H. BING, R. GUO and A. S. BHALLA, Ferroelectrics 242 (2000) 1.Google Scholar
  11. 11.
    Y. H. BING and Z. G. YE, J. Cryst. Growth 250 (2003) 118.CrossRefGoogle Scholar
  12. 12.
    N. YASUDA, N. UEMURA, H. OHWA, Y. YAMASHITA, M. IWATA, M. MAEDA, I. SUZUKI and Y. ISHIBASHI, J. Korean Physical Soc. 42 (2003) S1261.Google Scholar
  13. 13.
    M. IWATA, N. TOMISATO, H. ORIHARA, H. OHWA, N. YASUDA and Y. ISHIBASHI, Ferroelec. 261 (2001) 747.Google Scholar
  14. 14.
    M. IWATA, N. TOMISATO, H. ORIHARA, N. ARAI, N. TANAKA, H. OHWA, N. YASUDA and Y. ISHIBASHI, Jpn. J. Appl. Phys. Part 1 40 (2001) 5819.CrossRefGoogle Scholar
  15. 15.
    H. OHWA, M. IWATA, H. ORIHARA, N. YASUDA and Y. ISHIBASHI, J. Phys. Soc. Jpn. 70 (2001) 3149.CrossRefGoogle Scholar
  16. 16.
    R. E. EITEL, C. A. RANDALL, T. R. SHROUT and S. E. PARK, Jpn. J. Appl. Phys. Part 1 41 (2002) 2099.CrossRefGoogle Scholar
  17. 17.
    S. J. ZHANG, L. LEBRUN, S. RHEE, R. E. EITEL, C. A. RANDALL and T. R. SHROUT, J. Crys. Growth 236 (2002) 210.CrossRefGoogle Scholar
  18. 18.
    S. J. ZHANG, P. W. REHRIG, C. RANDALL and T. R. SHROUT, ibid. 234 (2002) 415.CrossRefGoogle Scholar
  19. 19.
    S. J. ZHANG, S. RHEE, C. A. RANDALL and T. R. SHROUT, Jpn. J. Appl. Phys. Part 1 41 (2002) 722.CrossRefGoogle Scholar
  20. 20.
    S. J. ZHANG, C. A. RANDALL and T. R. SHROUT, Appl. Phys. Lett. 83 (2003) 3150.CrossRefGoogle Scholar
  21. 21.
    L. E. CROSS, Nature 432(4) (2004) 84 (and references cited therein).Google Scholar
  22. 22.
    D. P. SKINNER, R. E. NEWNHAM and L. E. CROSS, Mat. Res. Bull. 13 (1978) 599.CrossRefGoogle Scholar
  23. 23.
    R. E. NEWNHAM, Ferroelec. (1986) 1.Google Scholar
  24. 24.
    H. P. SAVAKUS, K. A. KLICKER and R. E. NEWNHAM, Mater. Res. Bull. 16 (1981); KLICKER, Ph.D. Thesis. (The Pennsylvania State University, 1980).Google Scholar
  25. 25.
    J. W. SLIWA, S. AYTER and J. P. MOHR, U. S. Pat. No. 5239736, 1993.Google Scholar
  26. 26.
    R. L. GENTILMAN, D. F. FIORE, H. T. PHAM, K. W. FRENCH and L. J. BOWEN, in “Ceramic Transactions, Ferroic Materials: Design, Preparation, and Characteristics”, edited by A. S. Bhalla, K. M. Nair, I. K. Lloyd, H. Yanagida and D. A. Payne. (American Ceramic Society, Westerville, OH, 1994), Vol. 43: 239.Google Scholar
  27. 27.
    L. J. BOWEN and K. W. FRENCH, IEEE Proceedings of the Int’l Symp. on the Appl. of Ferroelec. (1992), 160.Google Scholar
  28. 28.
    L. J. BOWEN, R. L. GENTILMAN, H. T. PHAM, D. F. FIORE and K. W. FRENCH, in Proceedings of the IEEE Ultrasonics Symposium (1993), 499.Google Scholar
  29. 29.
    R. L. GENTILMAN, D. FIORE, H. PHAM, W. SERWATKA and L. BOWEN, in Proceedings of the SPIE: Industrial and Commercial Applications of Smart Structures Technologies, Vol. 2447, (1995) p. 274.Google Scholar
  30. 30.
    W. WERSING, in Proceedings IEEE International Symposium on Applications of Ferroelectrics (1986) p. 212.Google Scholar
  31. 31.
    E. W. BECKER, W. EHRFELD, P. HAGMANN, A. MANER and D. MUNCHMEYER, Microelec. Eng. 4 (1986) 35.CrossRefGoogle Scholar
  32. 32.
    U. BAST, D. CRAMER and A. Wolff, in Ceramics Today-Tomorrow's Ceramics, edited by. P. Vincenzini. (Elsevier Science Publishers, Amsterdam, 1991), Vol. 66C.Google Scholar
  33. 33.
    U. BAST, H. KAARMANN, K. LUBITZ, M. VOGT, W. WERSING and D. CRAMER, U.S. Patent No. 5164920 (1992).Google Scholar
  34. 34.
    K. LUBITZ, A. WOLFF and G. PREU, Ferroelec. 133 (1992).Google Scholar
  35. 35.
    K. LUBITZ, A. WOLFF and G. PREU, in IEEE Ultrasonics Symposium (Piscataway, New Jersey, 1993).Google Scholar
  36. 36.
    K. LUBITZ, A. WOLFF and B. SCHULMEYER, Ferroelec. 133 (1992) 21.Google Scholar
  37. 37.
    K. A. LUBITZ, A. WOLFF and G. PREU, Proc. 1993 IEEE Ultrasonics Symposium (Piscataway, New Jersey, 1993).Google Scholar
  38. 38.
    D. J. WALLER, M. S. Thesis, Rutgers University, New Brunswick, NJ (1991).Google Scholar
  39. 39.
    D. J. WALLER, A. SAFARI and R. J. CARD, Proc. of the 7th IEEE Int’l Symp. on the Appl. of Ferroelectr., IEEE, (Piscataway, NJ, USA, 1990) p. 82.Google Scholar
  40. 40.
    J. ZOLA, U.S. Patent No. 4572981 (1986).Google Scholar
  41. 41.
    S. LIVNEH, V. F. JANAS and A. SAFARI, J. Am. Ceram. Soc. 78 (1995) 1900.CrossRefGoogle Scholar
  42. 42.
    D. J. WALLER, T. IQBAL and A. SAFARI, ibid. 72 (1989) 322.CrossRefGoogle Scholar
  43. 43.
    S. S. LIVNEH, S. M. TING and A. SAFARI, Ferroelec. 157 (1994) 421.Google Scholar
  44. 44.
    J. W. STEVENSON, M. R. REIDMEYER and W. HEUBNER, J. Am. Ceram. Soc. 77 (1994) 2491.CrossRefGoogle Scholar
  45. 45.
    C. A. RANDALL, D. V. MILLER, J. H. ADAIR and A. S. BHALLA, J. Mater. Res. 8 (1993) 899.Google Scholar
  46. 46.
    C. A. RANDALL, C. P. BOWEN, T. R. SHROUT, A. S. BHALLA and R. E. NEWNHAM, in Proceedings of the 6th U.S. Japan Seminar on Dielectric and Piezoelectric Ceramics (1993) p. 152.Google Scholar
  47. 47.
    M. EYETT, D. BAUERLE and W. WERSING, J. Appl. Phys. 62 (1987) 1511.CrossRefGoogle Scholar
  48. 48.
    Y. OHARA, M. MIYAYAMA, K. KOUMOTO and H. YANAGIDA, Sensors and Actuators A 40 (1994) 345.CrossRefGoogle Scholar
  49. 49.
    Idem., J. Mater. Sci. Lett., 12 (1993) 1279.CrossRefGoogle Scholar
  50. 50.
    M. J. CREEDON, S. GOPALAKRISHAN and W. A. SCHULZE, IEEE International Symposium on the Application of Ferroelectrics (State College, PA, 1994).Google Scholar
  51. 51.
    M. J. CREEDON and W. A. SCHULZE, Ferroelec. 153 (1994) 333.Google Scholar
  52. 52.
    J. D. ERVIN, D. BREI, C. A. V. HOY, J. R. MAWDSLEY and J. W. HALLORAN, in Proceedings of the ASME Aerospace Division (1996), Vol. 52, pp. 695–697.Google Scholar
  53. 53.
    C. A. V. HOY, A. BARDA, M. GRIFFITH and J. W. HALLORAN, J. Am. Ceram. Soc. 81 (1998) 152.CrossRefGoogle Scholar
  54. 54.
    D. P. SKINNER, R. E. NEWNHAM and L. E. CROSS, Mat. Res. Bull. (1978) 1553.Google Scholar
  55. 55.
    K. A. KLICKER, W. A. SHULTZE and J. V. BIGGERS, J. Am. Ceram. Soc. 65 (1982) C208.CrossRefGoogle Scholar
  56. 56.
    K. RITTENMYER, T. SHROUT, W. A. SCHULZE and R. E. NEWNHAM, Ferroelec. 41 (1982) 323.Google Scholar
  57. 57.
    Materials System Inc., www.matsysinc.com, (2004).Google Scholar
  58. 58.
    W. HACKENBERGER, P. MING-JEN, D. KUBAN, T. RITTER and T. SHROUT, Novel method for producing high frequency 2-2 composites from PZT ceramic, in IEEE Proceedings of the Ultrasonics Symposium, (2000), Vol. 2, pp. 969.Google Scholar
  59. 59.
    R. P. SCHAEFFER, V. F. JANAS and A. SAFARI, Proceedings of the 10th IEEE International Symposium on Applications of Ferroelectrics, Part 2 of 2 (1996).Google Scholar
  60. 60.
    W. HUEBNER, M. R. REIDMEYER, J. W. STEVENSON and L. BUSSE, Proceedings of the 9th IEEE International Symposium on Applications of Ferroelectrics (University Park, PA, USA, 1994).Google Scholar
  61. 61.
    D. M. MILLS and S. W. SMITH, IEEE Transactions of the Ultrasonics, Ferroelectrics and Frequency Control. 49 (2002) 1005.CrossRefGoogle Scholar
  62. 62.
    C. VAN HOY, A. BARDA, M. GRIFFITH and J. W. HALLORAN, J. Amer. Ceramic Soc. 81 (1998) 152.Google Scholar
  63. 63.
    J. W. HALLORAN, Brit. Ceramic Trans. 98 (1999) 299.CrossRefGoogle Scholar
  64. 64.
    H. L. MARCUS, J. J. BEAMAN, J. W. BARLOW, D. L. BOURELL and R. H. CRAWFORD, Solid Freeform Fabrication Symposium, (Austin, TX, 1992).Google Scholar
  65. 65.
    H. L. MARCUS, J. J. BEAMEN, J. W. BARLOW, D. L. BOURELL and R. H. CRAWFORD, Solid Freeform Fabrication Proceedings (Austin, TX, 1992).Google Scholar
  66. 66.
    H. L. MARCUS, J. J. BEAMEN, J. W. BARLOW, D. L. BOURELL and R. H. CRAWFORD, Solid Freeform Fabrication Proceedings, (University of Texas at Austin, Austin, TX, 1991).Google Scholar
  67. 67.
    H. L. MARCUS and D. L. BOURELL, Adv. Mat. Proc. 9 (1993) 677.Google Scholar
  68. 68.
    H. L. MARCUS, Mech. Eng. 117 (1995) 62.Google Scholar
  69. 69.
    D. L. BOURELL, J. J. BEAMEN, H. L. MARCUS and J. W. BARLOW, Solid Freeform Fabrication Proceedings (Austin, TX, 1990).Google Scholar
  70. 70.
    P. F. JACOBS, “Stereolithography and Other RP & M Technologies from Rapid Prototyping to Rapid Tooling,” Dearborn, MI: Society of Manufacturing Engineers (1995).Google Scholar
  71. 71.
    P. F. JACOBS, “Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography,” Dearborn, MI: Society of Manufacturing Engineers (1992).Google Scholar
  72. 72.
    M. FEYGIN and B. HSIEH, in Proceedings of the Solid Freeform Fabrication Symposium. (1991), p. 123.Google Scholar
  73. 73.
    M. FEYGIN, U. S. Patent No. 5354414 (1994).Google Scholar
  74. 74.
    J. CESARANO, T. A. BAER and P. CALVERT, in Proceedings of the Solid Freeform Fabrication Symposium. (1997) Vol. 8, pp. 25.Google Scholar
  75. 75.
    J. CESARANO, B. H. KING and H. B. DENHAM, in Proceedings of Solid Freeform Fabrication Symposium, (1998) Vol. 9, pp. 697.Google Scholar
  76. 76.
    E. M. SACHS, M. J. CIMA, P. WILLIAMS, D. BRANCAZIO and J. CORNIE, J. Eng. Ind. 114 (1992) 481.CrossRefGoogle Scholar
  77. 77.
    R. K. PANDA, Ph.D. Thesis, Rutgers University, New Brunswick, New Jersey (1998).Google Scholar
  78. 78.
    J. CESARANO and P. CALVERT, U.S. Patent No. 6027326 (2000).Google Scholar
  79. 79.
    A. SAFARI, Ph.D. Thesis, The Pennsylvania State University, State College, PA (1983).Google Scholar
  80. 80.
    W. SCHULZE, Ferroelectrics 50 (1983) 33.Google Scholar
  81. 81.
    T. R. SHROUT, L. J. BOWEN and W. A. SCHULZE, Mater. Res. Bulletin 15 (1980) 1371.CrossRefGoogle Scholar
  82. 82.
    A. SAFARI, ibid. 17 (1982) 301.CrossRefGoogle Scholar
  83. 83.
    S. TURCU, M.S. Thesis, Rutgers University, New Brunswick, NJ (2002).Google Scholar
  84. 84.
    S. TURCU, B. JADIDIAN, S. C. DANFORTH and A. SAFARI, J. Electroc. 9 (2002) 165.CrossRefGoogle Scholar
  85. 85.
    C. W. NAN, L. LIU and L. LI, J. Phys. D 33 (2000) 2988.Google Scholar
  86. 86.
    C. W. NAN and G. W. WENG, J. Appl. Phys. 88 (2000) 416.CrossRefGoogle Scholar
  87. 87.
    A. BANDYOPADHYAY, R. K. PANDA, V. E. JANAS, M. K. AGARWALA, S. C. DANFORTH and A. SAFARI, J. Amer. Ceramic Society 80 (1997) 1366.CrossRefGoogle Scholar
  88. 88.
    A. SAFARI, V. F. JANAS and R. K. PANDA, SPIE Symposium on Smart Structures and Materials, (San Diego, CA, 1996).Google Scholar
  89. 89.
    A. SAFARI, J. CESARANO, P. G. CLEM and B. BENDER, Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectronics, (Nara, Japan, 2002).Google Scholar
  90. 90.
    G. H. HAERTLING, Am. Ceram. Soc. Bull. 73 (1994) 93.Google Scholar
  91. 91.
    F. MOHAMMADI, A. KHOLKIN, B. JADIDIAN and A. SAFARI, Appl. Phys. Lett. 75 (1999) 2488.CrossRefGoogle Scholar
  92. 92.
    Q. M. WANG, Q. ZHANG, B. XU, R. LIU and L. E. CROSS, J. Appl. Phys. 86 (1999) 3352.CrossRefGoogle Scholar
  93. 93.
    A. SAFARI, S. C. DANFORTH, M. A. JAFARI, M. ALLAHVERDI, B. JADIDIAN, F. MOHAMMADI, N. VANKATARAMAN and S. RANGARAJAN, in Proceedings of the 9th European Conference on Rapid Prototyping and Manufacturing, (2000) p. 247.Google Scholar
  94. 94.
    A. SAFARI and S. C. DANFORTH, in Proceedings of the 11th IEEE International Symposium on the Applications of Ferroelectrics, (1998) p. 229.Google Scholar
  95. 95.
    A. BANDYOPADHYAY, R. K. PANDA, T. F. MCNULTY, F. MOHAMMADI, S. C. DANFORTH and A. SAFARI, Rapid Prototyping Journal 4 (1998) 37.CrossRefGoogle Scholar
  96. 96.
    A. SAFARI and M. ALLAHVERDI, Ceram. Eng. Sci. Proc. 22 (2001) 473.Google Scholar
  97. 97.
    F. MOHAMMADI, Ph.D. Thesis, Department of Ceramic and Materials Engineering, Rutgers University, New Jersey, USA (2001).Google Scholar
  98. 98.
    F. MOHAMMADI, A. KHOLKIN, S. C. DANFORTH and A. SAFARI, in Proceedings of the 11th IEEE International Symposium on the Applications of Ferroelectrics, pp. 273–275 (1998).Google Scholar
  99. 99.
    S. A. WISE, Sensors and Actuators A 69 (1998) 33.Google Scholar
  100. 100.
    Q. M. ZHANG, H. WANG and L. E. CROSS, J. Mater. Sci. 28 (1993) 3962.CrossRefGoogle Scholar
  101. 101.
    Y. SUGAWARA, K. ONITSUKA, S. YOSHIKAWA, Q. C. XU, R. E. NEWNHAM and K. UCHINO, J. Am. Ceram. Soc. 75 (1992) 996.CrossRefGoogle Scholar
  102. 102.
    A. M. UMARJI, A. L. KHOLKIN, T. F. MCNULTY, S. C. DANFORTH and A. SAFARI, in Proceedings of the 11th IEEE International Symposium on the Applications of Ferroelectrics, (1998) p. 269.Google Scholar
  103. 103.
    T. W. CHOU, B. A. CHEESEMAN, A. SAFARI and S. C. DANFORTH, Ceramic Eng. Sci. Proc. 22 (2001) 497.CrossRefGoogle Scholar
  104. 104.
    J. CHEN, Q. M. ZHANG, L. E. CROSS and C. M. TROTTIER, in Proceedings of International Conference on Intelligent Materials (ICIM), Williamsburg, VA, pp. 316–318 (1994).Google Scholar
  105. 105.
    M. ALLAHVERDI and A. SAFARI, J. Eur. Ceram. Soc. 21 (2001) 1485.CrossRefGoogle Scholar
  106. 106.
    M. ALLAHVERDI, B. JADIDIAN, B. HARPER, S. RANGARAJAN, M. JAFARI, S. C. DANFORTH and A. SAFARI, in Proceedings of 12th IEEE International Symposium on Applications of Ferroelectrics, edited by S. K. Streiffer, B. J. Gibbons and T. Tsurumi, (IEEE-UFFC, New Jersey, 2001) p. 381.Google Scholar
  107. 107.
    B. JADIDIAN, M. ALLAHVERDI, F. MOHAMMADI and A. SAFARI, Appl. Phys. Lett. 80 (2002) 1981.CrossRefGoogle Scholar
  108. 108.
    R. E. NEWNHAM, D. C. MARKLEY, R. J. MEYER JR, W. J. HUGHES, A.-C. HLADKY-HENNION and J. K. COCHRAN JR, Ceramic Transactions 150 (2004) 427.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringRutgers-The State University of New JerseyPiscatawayU.S.A.

Personalised recommendations