Advertisement

Journal of Materials Science

, Volume 41, Issue 1, pp 163–175 | Cite as

A Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics

  • J.-M. LiuEmail author
  • S. T. Lau
  • H. L. W. Chan
  • C. L. Choy
Article

Abstract

The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented.

Keywords

Domain Wall Defect Concentration Ferroelectric Phase Transition Monte Carlo Sequence Kinetic Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. LINES and A. M. GLASSS, “Principles and applications of ferroelectrics and related materials” (Gordon and Breach, New York, 1977).Google Scholar
  2. 2.
    I. S. ZHELUDEV, in “Solid State Physics,” edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press, New York, 1971) Vol. 26, p. 429.Google Scholar
  3. 3.
    L. E. CROSS, Ferroelectrics 76 (1987) 241.Google Scholar
  4. 4.
    A. P. LEVANYUK and A. S. SIGOV, Defects and structural phase transitions (Gordon and Breach, New York, 1988).Google Scholar
  5. 5.
    N. ICHINOSE, Ferroelectrics 203 (1997) 187.Google Scholar
  6. 6.
    Q. M. ZHANG, J. ZHAO, T. R. SHROUT and L. E. CROSS, J. Mater. Res. 12 (1997) 1777.Google Scholar
  7. 7.
    C. H. PARK and D. J. CHADI, Phys. Rev. B. 57 (1998) 13961.CrossRefGoogle Scholar
  8. 8.
    Z. WU, W. DUAN, Y. WANG, B. L. GU and X. W. ZHANG, ibid. 67 (2003) 052101.CrossRefGoogle Scholar
  9. 9.
    B. E. VUGMEISTER and M. D. GLINCHUK, Rev. Mod. Phys. 62 (1990) 993.CrossRefGoogle Scholar
  10. 10.
    E. COURTENS, Phys. Rev. Lett. 52 (1984) 69.CrossRefGoogle Scholar
  11. 11.
    A. K. TAGANTSEV, ibid. 72 (1994) 1100.CrossRefGoogle Scholar
  12. 12.
    C. C. SU, B. VUGMEISTER and A. G. KHACHATURYAN, J. Appl. Phys. 90 (2001) 6345.CrossRefGoogle Scholar
  13. 13.
    R. FISCH, Phys. Rev. B. 67 (2003) 094110.CrossRefGoogle Scholar
  14. 14.
    D. VIEHLAND, S. J. JANG and L. E. CROSS, J. Appl. Phys. 68 (1990) 2916.CrossRefGoogle Scholar
  15. 15.
    C. RANDALL, D. J. BARBER, R. W. WHATMORE and P. GROVES, J. Mater. Sci. 21 (1987) 4456.CrossRefGoogle Scholar
  16. 16.
    X. H. DAI, Z. XU and D. VIEHLAND, Philos. Mag. B. 70 (1994) 33.Google Scholar
  17. 17.
    G. Smolenski and A. Agranovska, Sov. Phys. Solid State 1 (1960) 1429.Google Scholar
  18. 18.
    A. J. LOVINGER, Macromolecules 18 (1985) 910.CrossRefGoogle Scholar
  19. 19.
    B. DAUDIN, M. DUBUS, F. MACCHI and L. F. LEGRAND, Nucl. Inst. Meth. Phys. Res. B 32 (1988) 177.CrossRefGoogle Scholar
  20. 20.
    Q. M. ZHANG, V. BHARTI and X. ZHAO, Science 280 (1998) 2101.CrossRefGoogle Scholar
  21. 21.
    S. SEMENOVSKAYA and A. G. KHACHATURYAN, J. Appl. Phys. 83 (1998) 5125.CrossRefGoogle Scholar
  22. 22.
    J.-M. LIU, X. WANG, H. L. W. CHAN and C. L. CHOY, Phys. Rev. B.69 (2004) 094114.CrossRefGoogle Scholar
  23. 23.
    X. WANG, J.-M. LIU, H. L. W. CHAN and C. L. CHOY, J. Appl. Phys. 95 (2004) 4282.CrossRefGoogle Scholar
  24. 24.
    J.-M. LIU, K. F. WANG, S. T. LAU, H. L. W. CHAN and C. L. CHOY, Comput. Mater. Sci. 33 (2005) 66.CrossRefGoogle Scholar
  25. 25.
    S. T. LAU, H. L. W. CHAN and C. L. CHOY, Appl. Phys. A 80 (2005) 289–294.Google Scholar
  26. 26.
    H. L. HU and L. Q. CHEN, Mater. Sci. & Eng. A 238 (1997) 182; J. Am. Ceram. Soc. 81 (1998) 492.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • J.-M. Liu
    • 1
    Email author
  • S. T. Lau
    • 2
  • H. L. W. Chan
    • 2
  • C. L. Choy
    • 2
  1. 1.Laboratory of Solid State MicrostructuresNanjing UniversityNanjingChina
  2. 2.Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations