Journal of Materials Science

, Volume 41, Issue 1, pp 137–145 | Cite as

Properties of ferroelectric ultrathin films from first principles

  • Igor A. KornevEmail author
  • Huaxiang Fu
  • Laurent Bellaiche


Advances in first-principles computational approaches have, over the past ten years, made possible the investigation of basic physical properties of simple ferroelectric systems. Recently, first-principles techniques also proved to be powerful methods for predicting finite-temperature properties of solid solutions in great details. Consequently, bulk perovskites are rather well understood nowadays. On the other hand, one task still remains to be accomplished by ab-initio methods, that is, an accurate description and a deep understanding of ferroelectric nanostructures. Despite the fact that nanometer scale ferroelectric materials have gained widespread interest both technologically and scientifically (partly because of novel effects arising in connection with the reduction of their spatial extension), first-principles-based calculations on ferroelectric nanostructures are rather scarce. For instance, the precise effects of the substrate, growth orientation, surface termination, boundary conditions and thickness on the finite-temperature ferroelectric properties of ultrathin films are not well established, since their full understandings require (i) microscopic insights on nanoscale behavior that are quite difficult to access and analyze via experimental probes, and (ii) the development of new computational schemes. One may also wonder how some striking features exhibited by some bulk materials evolve in the corresponding thin films. A typical example of such feature is the morphotropic phase boundary of various solid solutions, where unusual low-symmetry phases associated with a composition-induced rotation of the spontaneous polarization and an enhancement of dielectric and piezoelectric responses were recently discovered. In this paper, recent findings resulting from the development and use of numerical first-principles-based tools on ferroelectric ultrathin films are discussed.


Domain Wall Spontaneous Polarization Critical Thickness Morphotropic Phase Boundary Stripe Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. RAMESH, S. AGGARWAL and O. AUCIELLO, Mat. Sc. Eng. 32 (2001) 191.Google Scholar
  2. 2.
    N. SETTER (Ed.), in “Piezoelectric materials in devices: extended reviews on current and emerging piezoelectric materials, technology, and applications” (EPFL Swiss Federal Institute of Technology, 2002).Google Scholar
  3. 3.
    J. SCOTT, in “Ferroelectric memories” (Springer Verlag, Berlin, 2000).Google Scholar
  4. 4.
    K. UCHINO, in “Piezoelectric Actuators and Ultrasonic Motors” (Kluwer Academic Publishers, Boston, 1996).Google Scholar
  5. 5.
    S.-E. PARK and T. R. SHROUT, J. Appl. Phys. 82 (1997) 1804.Google Scholar
  6. 6.
    R. F. SERVICE, Science 275 (1997) 1878.Google Scholar
  7. 7.
    B. NOHEDA, Appl. Phys. Lett. 74 (1999) 2059.Google Scholar
  8. 8.
    L. BELLAICHE, A. GARCIA and D. VANDERBILT, Phys. Rev. Lett. 84 (2000) 5427.Google Scholar
  9. 9.
    L. BELLAICHE, A. GARCIA and D. VANDERBILT, Ferroelectrics 266, 41 (2002).Google Scholar
  10. 10.
    B. NOHEDA, Current Opinion in Solid State and Materials Science 6 (2002) 27.Google Scholar
  11. 11.
    H. FU and R. E. COHEN, Nature 403 (2000) 281.Google Scholar
  12. 12.
    I. GRINBERG, V. R. COOPER and A. M. RAPPE, Nature 419 (2002) 909.Google Scholar
  13. 13.
    Z. WU and H. KRAKAUER, Phys. Rev. B 68 (2003) 014112.Google Scholar
  14. 14.
    A. OHTOMO, D. A. MULLER, J. L. GRAZUL and H. Y. HWANG, Nature 419 (2002) 378.Google Scholar
  15. 15.
    D. WOLPERT, K. KOROLEV, S. SACHS, J. KNAB, W. COX, J. CERNE, A. G. MARKELZ, T. ZHAO, R. RAMESH and B. H. MOECKLY, Physica E: Low-dimensional Systems and Nanostructures 19 (2003) 236.Google Scholar
  16. 16.
    E. D. MISHINA, V. I. STADNICHUK, A. S. SIGOV, Y. I. GOLOVKO, V. M. MUKHOROTOV, S. NAKABAYASHI, H. MASUDA, D. HASHIZUME and A. NAKAO, Physica E: Low-dimensional Systems and Nanostructures 25 (2004) 35.Google Scholar
  17. 17.
    D. G. SCHLOM, J. H. HAENI, J. LETTIERI, C. D. THEIS, W. TIAN, J. C. JIANG and X. Q. PAN, Materials Science and Engineering B 87 (2001) 282.Google Scholar
  18. 18.
    A. LIN, X. HONG, V. WOOD, A. A. VEREVKIN, C. H. AHN, R. A. MCKEE, F. J. WALKER and E. D. SPECHT, Applied Physics Letters 78 (2001) 2034.Google Scholar
  19. 19.
    Y. WANG, C. GANPULE, B. T. LIU, H. LI, K. MORI, B. HILL, M. WUTTIG, R. RAMESH, J. FINDER, Z. YU, et al. Appl. Phys. Lett. 80 (2002) 97.Google Scholar
  20. 20.
    K. EISENBEISER, J. M. FINDER, Z. YU, J. RAMDANI, J. A. CURLESS, J. A. HALLMARK, R. DROOPAD, W. J. OOMS, L. SALEM, and S. BRADSHAW, et al., Appl. Phys. Lett. 76 (2000) 1324.Google Scholar
  21. 21.
    O. AUCIELLO, J. F. SCOTT and R. RAMESH, Physics Today 51 (1998) 22.Google Scholar
  22. 22.
    J. F. SCOTT, Ann. Rev. Mat. Sci. 28 (1998) 79.Google Scholar
  23. 23.
    M. E. LINES and A. M. GLASS, “Principles and Applications of Ferroelectrics and Related Materials” (Clarendon Press, 1977).Google Scholar
  24. 24.
    T. TYBELL, C. H. AHN and J.-M. TRISCONE, Appl. Phys. Lett. 75 (1999) 856.Google Scholar
  25. 25.
    A. V. BUNE, V. M. FRIDKIN, S. DUCHARME, L. M. BLINOV, S. P. PALTO, A. V. SOROKIN, S. G. YUDIN and A. ZLATKIN, Nature 391 (1998) 874.Google Scholar
  26. 26.
    D. D. FONG, G. B. STEPHENSON, S. K. STREIFFER, J. A. EASTMAN, O. AUCIELLO, P. H. FUOSS and C. THOMPSON, Science 304 (2004) 1650.Google Scholar
  27. 27.
    P. GHOSEZ and K. M. RABE, Appl. Phys. Lett. 76 (2000) 2767.Google Scholar
  28. 28.
    J. JUNQUERA AND P. GHOSEZ, Nature 422 (2003) 506.Google Scholar
  29. 29.
    S. TINTE AND M. G. STACHIOTTI, Phys. Rev. B 64 (2001) 235403.Google Scholar
  30. 30.
    H. FU and L. BELLAICHE, Phys. Rev. Lett. 91 (2003) 257601.Google Scholar
  31. 31.
    B. MEYER and D. VANDERBILT, Phys. Rev. B 63 (2001) 205426.Google Scholar
  32. 32.
    B. MEYER, J. PADILLA and D. VANDERBILT, Faraday Discussions 114 (1999) 395.Google Scholar
  33. 33.
    R. E. COHEN, J. Phys. Chem. Sol. 57 (1996) 1393.Google Scholar
  34. 34.
    R. COHEN, Ferroelectrics 194 (1997) 323.Google Scholar
  35. 35.
    L. FU, E. YASCHENKO, L. RESCA and R. RESTA, Phys. Rev. B 60 (1999) 2697.Google Scholar
  36. 36.
    S. K. STREIFFER, J. A. EASTMAN, D. D. FONG, C. THOMPSON, A. MUNKHOLM, M. V. R. MURTY, O. AUCIELLO, G. R. BAI and G. B. STEPHENSON, Phys. Rev. Lett. 89 (2002) 067601.Google Scholar
  37. 37.
    A. KOPAL, T. BAHNIK and J. FOUSEK, Ferroelectrics 202 (1997) 267.Google Scholar
  38. 38.
    Y. L. LI, S. Y. HU, Z. K. LIU and L. Q. CHEN, Appl. Phys. Lett. 81 (2002) 427.Google Scholar
  39. 39.
    R. R. MEHTA, B. D. SILVERMAN and J. T. JACOBS, J. Appl. Phys. 44 (1973) 3379.Google Scholar
  40. 40.
    J. JUNQUERA, O. DIEGUEZ, K. M. RABE, P. GHOSEZ, C. LICHTENSTEIGER and J.-M. TRISCONE, in “Fundamental Physics of Ferroelectrics” (NISTIR, Gaitherburg. Colonial Williamsburg, VA, 2004), pp. 86–87.Google Scholar
  41. 41.
    I. A. KORNEV AND L. BELLAICHE, Phys. Rev. Lett. 91 (2003) 116103.Google Scholar
  42. 42.
    L. D. LANDAU and E. M. LIFSCHITZ, in “Electrodynamics of Continuous Media.” (Pergamon Press, 1984).Google Scholar
  43. 43.
    M. D. GLINCHUK, E. A. ELISEEV, V. A. STEPHANOVICH and R. FARHI, J. Appl. Phys. 93 (2003) 1150.Google Scholar
  44. 44.
    V. ZHIRNOV, Sov. Phys. JETP 35 (1958) 1175.Google Scholar
  45. 45.
    N. A. PERTSEV, V. G. KUKHAR, H. KOHLSTEDT and R. WASER, Phys. Rev. B 67 (2003) 054107.Google Scholar
  46. 46.
    M. G. COTTAM, D. R. TILLEY and B. ZEKS, J. Phys. C: Solid St. Phys. 17 (1984) 1793.Google Scholar
  47. 47.
    Y. WANG, W. ZHONG and P. ZHANG, Phys. Rev. B 53 (1996) 11439.Google Scholar
  48. 48.
    A. M. GEORGE, J. INIGUEZ and L. BELLAICHE, Nature 413 (2001) 54.Google Scholar
  49. 49.
    W. ZHONG, D. VANDERBILT and K. RABE, Phys. Rev. Lett. 73 (1994) 1861.Google Scholar
  50. 50.
    W. ZHONG, D. VANDERBILT and K. RABE, Phys. Rev. B 52 (1995) 6301.Google Scholar
  51. 51.
    I. A. KORNEV and L. BELLAICHE, Phys. Rev. Lett. 89 (2002) 115502.Google Scholar
  52. 52.
    A. AL-BARAKATY and L. BELLAICHE, Appl. Phys. Lett. 81 (2002) 2442.Google Scholar
  53. 53.
    K. RABE and P. GHOSEZ, Journal of Electroceramics 4 (2000) 379.Google Scholar
  54. 54.
    R. KRETSCHMER and K. BINDER, Phys. Rev. B 20 (1979) 1065.Google Scholar
  55. 55.
    B. MEYER and D. VANDERBILT, Phys. Rev. B 65 (2002) 104111.Google Scholar
  56. 56.
    J. M. SOLER, E. ARTACHO, J. D. GALE, A. GARCíA, J. JUNQUERA, P. ORDEJóN and D. SáNCHEZ-PORTAL, J. Phys.: Cond. Matter 14 (2002) 2745.Google Scholar
  57. 57.
    O. DIEGUEZ, S. TINTE, A. ANTONS, C. BUNGARO, J. B. NEATON, K. M. RABE and D. VANDERBILT, Phys. Rev. B 69 (2004) 212101.Google Scholar
  58. 58.
    N. PERTSEV, A. ZEMBILGOTOV and A. TAGANTSEV, Phys. Rev. Lett. 80 (1998) 1988.Google Scholar
  59. 59.
    G. KRESSE and J. FURTHMULLER, Phys. Rev. B 54 (1996) 11169.Google Scholar
  60. 60.
    G. KRESSE and J. HAFNER, Phys. Rev. B 47 (1993) 558.Google Scholar
  61. 61.
    I. KORNEV, H. FU and L. BELLAICHE, Phys. Rev. Lett. 93 (2004) 196104.Google Scholar
  62. 62.
    L. HE and D. VANDERBILT, Phys. Rev. B 68 (2003) 134103.Google Scholar
  63. 63.
    Z. WU, N. HUANG, Z. LIU, J. WU, W. DUAN, B.-L. GU and X.-W. ZHANG, Phys. Rev. B 70 (2004) 104108.Google Scholar
  64. 64.
    E. ALMAHMOUD, Y. NAVTSENYA, I. KORNEV, H. FU and L. BELLAICHE, Phys. Rev. B 70 (2004) 220102(R).Google Scholar
  65. 65.
    I. NAUMOV, L. BELLAICHE and H. FU, Nature (London) 432 (2004) 737.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Igor A. Kornev
    • 1
    • 2
    Email author
  • Huaxiang Fu
    • 1
  • Laurent Bellaiche
    • 1
  1. 1.Physics DepartmentUniversity of ArkansasFayettevilleUSA
  2. 2.Novgorod State UniversityRussia

Personalised recommendations