Journal of Materials Science

, Volume 41, Issue 1, pp 129–136 | Cite as

The relaxor enigma — charge disorder and random fields in ferroelectrics

  • Wolfgang Kleemann


Substitutional charge disorder giving rise to quenched electric random-fields (RF s) is probably at the origin of the peculiar behavior of relaxor ferroelectrics, which are primarily characterized by their strong frequency dispersion of the dielectric response and by an apparent lack of macroscopic symmetry breaking at the phase transition. Spatial fluctuations of the RF s correlate the dipolar fluctuations and give rise to polar nanoregions in the paraelectric regime as has been evidenced by piezoresponse force microscopy (PFM) at the nanoscale. The dimension of the order parameter decides upon whether the ferroelectric phase transition is destroyed (e.g. in cubic PbMg1/3Nb2/3O3, PMN) or modified towards RF Ising model behavior (e.g. in tetragonal Sr1− x Ba x Nb2O6, SBN, x ≈ 0.4). Frustrated interaction between the polar nanoregions in cubic relaxors gives rise to cluster glass states as evidenced by strong pressure dependence, typical dipolar slowing-down and theoretically treated within a spherical random bond-RF model. On the other hand, freezing into a domain state takes place in uniaxial relaxors. While at Tc non-classical critical behavior with critical exponents γ ≈ 1.8, β ≈ 0.1 and α ≈ 0 is encountered in accordance with the RF Ising model, below Tc ≈ 350 K RF pinning of the walls of frozen-in nanodomains gives rise to non-Debye dielectric response. It is relaxation- and creep-like at radio and very low frequencies, respectively.


Domain Wall Ferroelectric Phase Transition Relaxor Ferroelectric Piezoresponse Force Microscopy Random Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. LINES and A. M. GLASS, in “Principles and Applications of Ferroelectrics and Related Materials” (Clarendon, Oxford, 1977).Google Scholar
  2. 2.
    L. E. CROSS, Ferroelectrics 76 (1987) 241.Google Scholar
  3. 3.
    G. BURNS and F. H. DACOL, Solid State Commun. 48 (1983) 853; Phase Trans. 5 (1985) 261.Google Scholar
  4. 4.
    R. B. GRIFFITHS, Phys. Rev. Lett. 23 (1968) 69.Google Scholar
  5. 5.
    CH. BINEK and W. KLEEMANN, Phys. Rev. B 51 (1995) 12888.CrossRefGoogle Scholar
  6. 6.
    V. WESTPHAL, W. KLEEMANN and M. D. GLINCHUK, Phys. Rev. Lett. 68 (1992) 847.CrossRefGoogle Scholar
  7. 7.
    S. B. VAKHRUSHEV, B. E. KVYATKOVSKY, A. A. NABEREZHOV, N. M. OKUNEVA and B. B. TOPERVERG, Ferroelectrics 90 (1989) 173; G. SCHMIDT, H. ARNDT, G. BORCHARDT, J. V. CIEMINSKI, T. PETZSCHE, K. BORMANN, A. STERNBERG, A. ZIRNITE and A. V. ISUPOV, Phys. Stat. Solidi A 63 (1981) 501.Google Scholar
  8. 8.
    K. BINDER and A. P. YOUNG, Rev. Mod. Phys. 58 (1986) 801.CrossRefGoogle Scholar
  9. 9.
    I. IMRY and S. K. MA, Phys. Rev. Lett. 35 (1975) 1399.CrossRefGoogle Scholar
  10. 10.
    D. P. BELANGER and A. P. YOUNG, J. Magn. Magn. Mater. 100 (1991) 272.CrossRefGoogle Scholar
  11. 11.
    D. S. FISHER, Phys. Rev. Lett. 56 (1986) 416; A. T. OGIELSKI and D. A. HUSE, Phys. Rev. Lett. 56 (1986) 1298.Google Scholar
  12. 12.
    G. A. SMOLENSKI and V. A. ISUPOV, Dokl. Acad. Nauk SSSR 97 (1954) 653.Google Scholar
  13. 13.
    W. KLEEMANN, J. DEC, P. LEHNEN, T. H. WOIKE and R. PANKRATH, in: “Fundamental Physics of Ferroelectrics 2000”, edited by R. E. Cohen, AIP Conf. Proc. 535 (2000) 26.Google Scholar
  14. 14.
    G. A. SAMARA, Solid State Physics 56 (2001), edited by H. Ehrenreich and F. Spaepen (Academic Press, New York, 2001) p. 240 and references therein; J. Phys.: Cond. Matter 15 (2003) R367.Google Scholar
  15. 15.
    D. SHERRINGTON and S. KIRKPATRICK, Phys. Rev. Lett. 35 (1975) 1972.CrossRefGoogle Scholar
  16. 16.
    D. VIEHLAND, M. WUTTIG and L. E. CROSS, Ferroelectrics 120 (1991) 71; Phys. Rev. B 46 (1993) 8003.Google Scholar
  17. 17.
    A. BOKOV and Z. G. YE, ibid. 66 (2002) 064103.CrossRefGoogle Scholar
  18. 18.
    P. BONNEAU et al., Solid State Chem. 91 (1991) 350; L. E. CROSS, Ferroelectrics 151 (1994) 305; A. D. HILTON et al., J. Mater. Sci. 25 (1990) 3461; T. EGAMI et al., Ferroelectrics 199 (1997) 103; B. DKHIL et al., Phys. Rev. B 65 (2002) 4104.Google Scholar
  19. 19.
    E. HUSSON, M. CHUBB and A. MORELL, Mat. Res. Bull. 23 (1988) 357.CrossRefGoogle Scholar
  20. 20.
    H. QIAN and L. A. BURSILL, Int. J. Mod. Phys. B 10 (1996) 2027.CrossRefGoogle Scholar
  21. 21.
    Y. UESU, H. TAZAWA and K. FUJISHIRO, J. Kor. Phys. Soc. 29 (1998) S703.Google Scholar
  22. 22.
    P. LEHNEN, J. DEC, W. KLEEMANN, TH. WOIKE and R. PANKRATH, Ferroelectrics 268 (2002) 113.CrossRefGoogle Scholar
  23. 23.
    R. BLINC, J. DOLINSEK, A. GREGOROVIC, B. ZALAR, C. FILIPIC, Z. KUTNJAK, A. LEVSTIK and R. PIRC, Phys. Rev. Lett. 83 (1999) 424.CrossRefGoogle Scholar
  24. 24.
    Z. KUTNJAK, C. FILIPIC, R. PIRC, A. LEVSTIK, R. FARHI and M. EL MARSSI, Phys. Rev. B 59 (1999) 294.CrossRefGoogle Scholar
  25. 25.
    J. R. OLIVER, R. R. NEURGAONKAR and L. E. CROSS, J. Appl. Phys. 64 (1988) 37.CrossRefGoogle Scholar
  26. 26.
    W. KLEEMANN, J. DEC, P. LEHNEN, R. BLINC, B. ZALAR and R. PANKRATH, Europhys. Lett. 57 (2002) 14.CrossRefGoogle Scholar
  27. 27.
    P. LEHNEN, W. KLEEMANN, TH. WOIKE and R. PANKRATH, Eur. Phys. J.B 14 (2000) 633.Google Scholar
  28. 28.
    J. DEC, W. KLEEMANN, V. BOBNAR, Z. KUTNJAK, A. LEVSTIK, R. PIRC and R. PANKRATH, Europhys. Lett. 55 (2001) 781.CrossRefGoogle Scholar
  29. 29.
    W. KLEEMANN, P. LICINIO, TH. WOIKE and R. PANKRATH, Phys. Rev. Lett. 86 (2001) 6014.CrossRefGoogle Scholar
  30. 30.
    F. M. JIANG and S. KOJIMA, Phys. Rev. B 62 (2000) 8572.CrossRefGoogle Scholar
  31. 31.
    P. LEHNEN, W. KLEEMANN, TH. WOIKE and R. PANKRATH, ibid. 64 (2001) 224109.CrossRefGoogle Scholar
  32. 32.
    A. A. MIDDLETON and D. S. FISHER, ibid. 65 (2002) 134411.CrossRefGoogle Scholar
  33. 33.
    R. BLINC, A. GREGOROVIC, B. ZALAR, R. PIRC, J. SELIGER, W. KLEEMANN, S. G. LUSHNIKOV and R. PANKRATH, ibid. 64 (2001) 134109.CrossRefGoogle Scholar
  34. 34.
    F. YE, L. ZHOU, S. LAROCHELLE, L. LU, D. P. BELANGER, M. GREVEN and D. LEDERMAN, Phys. Rev. Lett. 89 (2002) 157202.CrossRefGoogle Scholar
  35. 35.
    Z. KUTNJAK, W. KLEEMANN and R. PANKRATH, Phys. Rev. B. (submitted)Google Scholar
  36. 36.
    J. FOUSEK and V. JANOVEC, Phys. Stat. Sol. (a) 13 (1966) 105.Google Scholar
  37. 37.
    L. B. IOFFE and V. M. VINOKUR, J. Phys. C 20 (1987) 6149.CrossRefGoogle Scholar
  38. 38.
    T. NATTERMANN, Y. SHAPIR and I. VILFAN, Phys. Rev. B 42 (1990) 8577.CrossRefGoogle Scholar
  39. 39.
    T. NATTERMANN, V. POKROVSKY and V. M. VINOKUR, Phys. Rev. Lett. 87 (2001) 197005.CrossRefGoogle Scholar
  40. 40.
    W. KLEEMANN, J. DEC, S. MIGA, TH. WOIKE and R. PANKRATH, Phys. Rev. B 65 (2002) 220101R.CrossRefGoogle Scholar
  41. 41.
    Y. PARK, Solid State Commun. 113 (2000) 379.CrossRefGoogle Scholar
  42. 42.
    A. K. JONSCHER, in “Dielectric Relaxation in Solids” (Chelsea Dielectric Press, London, 1983).Google Scholar
  43. 43.
    A. A. FEDORENKO, V. MUELLER and S. STEPANOW, Phys. Rev. B 70 (2004) 224104.Google Scholar
  44. 44.
    D. DAMJANOVIC, S. S. N. BHARADWAJA and N. SETTER, Adv. Mater. (in print).Google Scholar
  45. 45.
    W. KLEEMANN, J. DEC and R. PANKRATH, Ferroelectrics 286 (2003) 21.CrossRefGoogle Scholar
  46. 46.
    J. DEC, W. KLEEMANN and M. ITOH, Ferroelectrics 298 (2004) 163.CrossRefGoogle Scholar
  47. 47.
    V. V. SHVARTSMAN and A. L. KHOLKIN, Phys. Rev. B 69 (2004) 014102.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Wolfgang Kleemann
    • 1
  1. 1.Angewandte PhysikUniversität Duisburg-EssenDuisburgGermany

Personalised recommendations