Journal of Materials Science

, Volume 41, Issue 1, pp 117–127 | Cite as

Dielectric response of polymer relaxors

  • BożEna Hilczer
  • Hilary Smogór
  • Janina Goslar


Dielectric response of vinylidene fluoride type ferroelectric polymers is dominated by that of segmental motions in the amorphous phase in temperature range 200–300 K and contributions related to the local mode and ferroelectric–paraelectric transition in the crystalline phase of the polymer at higher temperatures. Diffuse and frequency-dependent dielectric anomaly observed in fast electron irradiated polyvinylidene fluoride-trifluoroethylene P(VDF/TrFE) has been related to relaxor-like behavior induced in the semicrystalline ferroelectric copolymers. As random field and the response of polar nanosize clusters determine the relaxor behavior the effects of disorder and fast electron irradiation (below and above T C) on the three contributions to the dielectric response of PVDF, P(VDF/TrFE)(75/25) and P(VDF/TrFE)(50/50) are shown. The processes involved in radiation-induced functionalization of PVDF-type polymers are discussed on the basis of results of ESR, IR and Raman spectroscopy studies.


Electron Spin Resonance PVDF Electron Spin Resonance Spectrum Curie Point Dielectric Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. FURUKAWA, M. DATE, E. FUKADA, Y. TAJITSU and A. CHIBA, Jpn. J. Appl. Phys. 19 (1980) L109.CrossRefGoogle Scholar
  2. 2.
    T. FURUKAWA, M. DATE and E. FUKADA, J. Appl. Phys. 51 (1980) 1135.CrossRefGoogle Scholar
  3. 3.
    T. YAGI, M. TATEMOTO and J. SAKO, Polymer J.12 (1980) 209.CrossRefGoogle Scholar
  4. 4.
    T. T. WANG, J. M. HERBERT and A. M. GLASS (Eds.), “The application of ferroelectric polymers”. (Blackie, Glasgow, Scotland 1988).Google Scholar
  5. 5.
    K. UCHINO, “Ferroelectric Devices”. (Marcel Dekker, Inc., New York 2000) p. 156.Google Scholar
  6. 6.
    S. B. LANG, Key Eng. Mater. 92–93 (1994) 83.Google Scholar
  7. 7.
    A. J. LOVINGER, in “Developments in crystalline polymers-1”, edited by. J. C. Bassett (Appl. Sci. Pub. Ltd., London, 1982), p.195.Google Scholar
  8. 8.
    K. TASHIRO, in “Ferroelectric polymers — chemistry, physics and applications”, edited by. H. S. Nalwa, (Marcel Dekker, New York, 1995) p. 62.Google Scholar
  9. 9.
    N. KOIZUMI, Key Eng. Mater. 92–93 (1994) 161.Google Scholar
  10. 10.
    R. G. KEPLER, in “Ferroelectric polymers — chemistry, physics and applications”, edited by. H. S. Nalwa, (Marcel Dekker, New York, 1995) p. 1183.Google Scholar
  11. 11.
    B. HILCZER, J. KUłEK, E. MARKIEWICZ and M. KOSEC, J. Non-Crystalline Solids 305 (2002) 167.CrossRefGoogle Scholar
  12. 12.
    T. FURUKAWA, Adv. Colloid Interf. Sci. 71–72 (1997) 183.Google Scholar
  13. 13.
    J. MAłECKI, Private information (MP3 calculations of the dipole moments).Google Scholar
  14. 14.
    H. OHIGASHI and T. HATTORI, Ferroelectrics 171 (1995) 11.Google Scholar
  15. 15.
    T. C. CHUNG and A. PETCHSUK, Ferroelectr. Lett. 28 (2001) 136.Google Scholar
  16. 16.
    H. XU, Z.-Y. CHENG, D. OLSON, T. MAI, Q. M. ZHANG and G. KAWAMOS, Appl. Phys. Lett. 78 (2001) 2360.CrossRefGoogle Scholar
  17. 17.
    V. BOBNAR, B. VODOPIVEC, A. LEVSTIK, M. KOSEC, B. HILCZER and Q. M. ZHANG, Macromolecules 36 (2003) 4436.Google Scholar
  18. 18.
    Q. M. ZHANG, V. BHARTI and X. ZHAO, Science 280 (1998) 2101.Google Scholar
  19. 19.
    X. ZHAO, V. BHARTI, Q. M. ZHANG, T. ROMOTOWSKI, F. TITO and R. TING, Appl. Phys. Lett. 73 (1998) 2054.CrossRefGoogle Scholar
  20. 20.
    Z.-Y. CHENG, T.-B. XU, V. BHARTI, S. WANG and Q. M. ZHANG, ibid. 74 (1999) 1901.CrossRefGoogle Scholar
  21. 21.
    Z.-Y. CHENG, V. BHARTI, T.-B. XU, S. WANG and Q. M. ZHANG, J. Appl. Phys. 86 (1999) 2208.CrossRefGoogle Scholar
  22. 22.
    T. KARAKI, I. CHOU and L. E. CROSS, Jpn. J. Appl. Phys. 39 (2000) 5668.CrossRefGoogle Scholar
  23. 23.
    Y. TANG, X.-Z. ZHAO, H. L. W. CHAN and C. I. CHOY, Appl. Phys. Lett. 77 (2000) 1713.CrossRefGoogle Scholar
  24. 24.
    H. SMOGóR, B. HILCZER and S. WARCHOł, Ferroelectrics 258 (2001) 291.Google Scholar
  25. 25.
    B. HILCZER, H. SMOGóR, T. PAWłOWSKI, S. WARCHOł and M. NOWICKI, ibid. 261 (2001) 139.Google Scholar
  26. 26.
    V. BHARTI, G. SHANTHI, H. XU, Q. M. ZHANG and K. LIANG, Mater. Lett. 47 (2001) 107.CrossRefGoogle Scholar
  27. 27.
    D. ZHANG, X. YAO, X. CHEN, B. SHEN and L. ZHANG, Ferroelectrics 264 (2001) 21.Google Scholar
  28. 28.
    B. HILCZER, H. SMOGóR, J. GOSLAR and S. WARCHOł, Rad. Effects & Def. Solids 158 (2003) 349.CrossRefGoogle Scholar
  29. 29.
    H. SMOGóR, B. HILCZER, C. Z. PAWLACZYK, J. GOSLAR and S. WARCHOł, Ferroelectrics 294 (2003) 191.CrossRefGoogle Scholar
  30. 30.
    V. A. STEPHANOVICH, M. D. GLINCHUK, E. V. KIRICHENKO and B. HILCZER, J. Appl. Phys. 94 (2003) 5937.CrossRefGoogle Scholar
  31. 31.
    B. HILCZER, H. SMOGóR, J. GOSLAR and T. PAWłOWSKI, Ferroelectrics 298 (2004) 113.CrossRefGoogle Scholar
  32. 32.
    A. CHEN, in Abstracts of the Conference “Fundamental Physics of Ferroelectrics 2004” (Colonial Williamsburg, February 2004), p. 44.Google Scholar
  33. 33.
    R. R. ROY and R. D. REED, “Interactions of Phonons and Leptons with Matter” (Academic Press, New York 1968) p. 113.Google Scholar
  34. 34.
    A. ODAJIMA, Y. TAKASE, T. ISHIBASHI and K. YUASA, Jpn. J. Appl. Phys., Suppl. 24 (1985) 881.Google Scholar
  35. 35.
    B. DAUDIN, M. DUBUS and J. F. LEGRAND, J. Appl. Phys. 62 (1987) 994.CrossRefGoogle Scholar
  36. 36.
    B. DAUDIN, M. DUBUS, F. MACCHI and J. F. LEGRAND, Nuclear Instrum. & Meth. in Phys. Res. B 32 (1988) 177.CrossRefGoogle Scholar
  37. 37.
    F. MACCHI, B. DAUDIN and J. F. LEGRAND, Ferroelectrics 109 (1990) 303.Google Scholar
  38. 38.
    F. MACCHI, B. DAUDIN, A. ERMOLIEFF, S. MARTHON and J. F. LEGRAND, Radiation Effects & Defects in Solids 118 (1991) 117.Google Scholar
  39. 39.
    B. DAUDIN, J. F. LEGRAND and F. MACCHI, J. Appl. Phys. 70 (1991) 4037.CrossRefGoogle Scholar
  40. 40.
    J. F. LEGRAND, B. DAUDIN and E. BELLET-ALMARIC, Nucl. Instrum. & Meth. Phys. Res. B 105 (1998) 177.Google Scholar
  41. 41.
    J. S. FORSYTHE and D. J. T. HILL, Prog. polym. sci. 25 (2000) 101.CrossRefGoogle Scholar
  42. 42.
    B. RANBY and J. F. RABEK, “ESR Spectroscopy in Polymer Research”, (Springer Verlag, Berlin 1977), p. 254.Google Scholar
  43. 43.
    Z. B. ALFOSSI, (Ed.), “Peroxyl Radicals”, (John Willey & Sons Ltd., New York, 1997), p. 377.Google Scholar
  44. 44.
    N. BETZ, E. PETERSOHN and A. LE MOëL, Radiat. Phys. Chem. 47 (1996) 411.CrossRefGoogle Scholar
  45. 45.
    B. SCHRADER, (Ed.), “Infrared and Raman Spectroscopy; Methods and Applications”. (VCH Publishers Inc., New York, 1995) p. 190.Google Scholar
  46. 46.
    B. HILCZER, Key Eng. Mater. 101–102 (1995) 95.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • BożEna Hilczer
    • 1
  • Hilary Smogór
    • 1
  • Janina Goslar
    • 1
  1. 1.Institute of Molecular PhysicsPolish Academy of SciencesPoznańPoland

Personalised recommendations