Skip to main content
Log in

Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we review recent advances in piezoresponse force microscopy (PFM) with respect to nanoscale ferroelectric research, summarize the basic principles of PFM, illustrate what information can be obtained from PFM experiments and delineate the limitations of PFM signal interpretation relevant to quantitative imaging of a broad range of piezoelectrically active materials. Particular attention is given to orientational PFM imaging and data interpretation as well as to electromechanics and kinetics of nanoscale ferroelectric switching in PFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. D. SARID, Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces, Oxford Series in Optical and Imaging Sciences (University Press, Oxford, 1991).

  2. R. WIESENDANGER, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (University Press, Cambridge, 1994).

    Google Scholar 

  3. D. A. BONNELL, Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications (John Wiley & Sons, October 2000).

  4. V. TSUKRUK, Advances in Scanning Probe Microscopy (Macromolecular Symposia 167), (John Wiley & Sons, July 2001).

  5. A. DE STEFANIS and A. A. G. TOMLINSON, Scanning Probe Microscopies: From Surfaces Structure to Nano-Scale Engineering, Trans Tech Publications, Ltd.; April 2001.

  6. T. TYBELL, P. PARUCH, T. GIAMARCHI and J.-M. TRISCONE, Phys. Rev. Lett. 89 (2002) 097601.

    Article  CAS  Google Scholar 

  7. K. TERABE, M. NAKAMURA, S. TAKEKAWA, K. KITAMURA, S. HIGUCHI, Y. GOTOH and Y. CHO, Appl. Phys. Lett. 82 (2003) 433.

    Article  CAS  Google Scholar 

  8. S. V. KALININ, D. A. BONNELL, T. ALVAREZ, X. LEI, Z. HU, J. H. FERRIS, Q. ZHANG and S. DUNN, Nano Letters 2 (2002) 589.

    Article  CAS  Google Scholar 

  9. S. V. KALININ, D. A. BONNELL, T. ALVAREZ, X. LEI, Z. HU, R. SHAO and J. H. FERRIS, Adv. Mat. 16 (2004) 795.

    Article  CAS  Google Scholar 

  10. See, for example, references in A. Gruverman, in “Encyclopedia of Nanoscience and Nanotechnology”, edited by H.S.Nalwa, (American Scientific Publishers, Los Angeles, Vol. 3, 2004) pp. 359–375.

  11. W. G. CADY, Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals (Dover Publications, New York, 1964).

    Google Scholar 

  12. A. F. DEVONSHIRE, Philos. Mag. 40 (1949) 1040.

    CAS  Google Scholar 

  13. A. F. DEVONSHIRE, Adv. Phys. 3 (1954) 85.

    Article  Google Scholar 

  14. P. GUTHNER and K. DRANSFELD, Appl. Phys. Lett. 61 (1992) 1137.

    Article  Google Scholar 

  15. K. FRANKE, J. BESOLD, W. HAESSLE and C. SEEGEBARTH, Surf. Sci. Lett. 302 (1994) L283.

    Article  CAS  Google Scholar 

  16. A. GRUVERMAN, H. TOKUMOTO, S. A. PRAKASH, S. AGGARWAL, B. YANG, M. WUTTIG, R. RAMESH, O. AUCIELLO and V. VENKATESAN, Appl. Phys. Lett. 71 (1997) 3492.

    Article  CAS  Google Scholar 

  17. T. HIDAKA, T. MARUYAMA, M. SAITOH, N. MIKOSHIBA, M. SHIMIZU, T. SHIOSAKI, L. A. WILLS, R. HISKES, S. A. DICAROLIS and J. AMANO, Appl. Phys. Lett. 68 (1996) 2358.

    Article  CAS  Google Scholar 

  18. S. V. KALININ, E. KARAPETIAN and M. KACHANOV, Phys. Rev. B 70 (2004) 184101.

    Google Scholar 

  19. E. KARAPETIAN, M. KACHANOV and S. V. KALININ, Phil. Mag., in print

  20. S. V. KALININ and D. A. BONNELL, Phys. Rev. B 65 (2002) 125408.

    Google Scholar 

  21. Nanoscale Characterization of Ferroelectric Materials, edited by M. Alexe and A. Gruverman (Springer-Verlag, Berlin, 2004).

  22. L. M. ENG, H.-J. GÜNTHERODT, G. ROSENMAN, A. SKLIAR, M. ORON, M. KATZ and D. EGER, J. Appl. Phys. 83 (1998) 5973.

    Article  CAS  Google Scholar 

  23. L. M. ENG, H.-J. GUNTHERODT, G. A. SCHNEIDER, U. KOPKE and J. M. SALDANA, Appl. Phys. Lett. 74 (1999) 233.

    Article  CAS  Google Scholar 

  24. A. ROELOFS, U. BÖTTGER, R. WASER, F. SCHLAPHOF, S. TROGISCH and L. M. ENG, Appl. Phys. Lett. 77 (2000) 3444.

    Article  CAS  Google Scholar 

  25. B. J. RODRIGUEZ, A. GRUVERMAN, A. I. KINGON, R. J. NEMANICH and J. S. CROSS, J. Appl. Phys. 95 (2004) 1958.

    Article  CAS  Google Scholar 

  26. Mathematika 5.0, Wolfram Research.

  27. S. V. KALININ, B. J. RODRIGUEZ, S. JESSE, J. SHIN, A.P. BADDORF, P. GUPTA, H. JAIN, D.B. WILLIAMS and A. GRUVERMAN, unpublished.

  28. R. E. NEWNHAM, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, 2005).

  29. M. ABPLANALP, PhD thesis, Swiss Federal Institute of Technology, Zurich (2001).

  30. M. ABPLANALP, J. FOUSEK and P. GUNTER, Phys. Rev. Lett. 86 (2001) 5799.

    Article  CAS  Google Scholar 

  31. Equation 10 is valid only for l d > r d . To avoid this limitation, used here was the expression for the demagnetization factor for prolate ellipsoid from J. A. OSBORN, Phys. Rev. 67 (1945) 351.

  32. F. JONA and G. SHIRANE, Ferroelectric Crystals, (Dover Publications, New York, 1993).

  33. M. MOLOTSKII, J. Appl. Phys. 93 (2003) 6234.

    Article  CAS  Google Scholar 

  34. M. MOLOTSKII, A. AGRONIN, P. URENSKI, M. SHVEBELMAN, G. ROSENMAN and Y. ROSENWAKS, Phys. Rev. Lett. 90 (2003) 107601.

    Article  Google Scholar 

  35. S. V. KALININ, A. GRUVERMAN, B. J. RODRIGUEZ, J. SHIN, A. P. BADDORF, E. KARAPETIAN and M. KACHANOV, J. Appl. Phys. 97, 074305 (2005).

  36. B. D. HUEY, in “Nanoscale Phenomena in Ferroelectric Thin Films,” edited by S. Hong (Kluwer Academic Publishers, 2004).

  37. M. ALEXE, A. GRUVERMAN, C. HARNAGEA, N. D. ZAKHAROV, A. PIGNOLET, D. HESSE and J. F. SCOTT, Appl. Phys. Lett. 75 (1999) 1158.

    Article  CAS  Google Scholar 

  38. S. HONG, J. WOO, H. SHIN, J. U. JEON, Y. E. PAK, E. L. COLLA, N. SETTER, E. KIM and K. NO, J. Appl. Phys. 89 (2001) 1377.

    Article  CAS  Google Scholar 

  39. C. HARNAGEA, A. PIGNOLET, M. ALEXE and D. HESSE, Integrated Ferroelectrics 38 (2001) 23.

    CAS  Google Scholar 

  40. C. HARNAGEA, PhD thesis, Martin-Luther-Universität Halle Wittenberg, Halle, 2001.

  41. S. V. KALININ, A. GRUVERMAN and D. A. BONNELL, Appl. Phys. Lett. 85 (2004) 795.

    Article  CAS  Google Scholar 

  42. Shown here are PFM images representing the A cos θ signal, where A is piezoresponse amplitude and θ is phase.

  43. A. GRUVERMAN, A. PIGNOLET, K. M. SATYALAKSHMI, M. ALEXE, N. D. ZAKHAROV and D. HESSE, Appl. Phys. Lett. 76 (2000) 106.

    Article  CAS  Google Scholar 

  44. C. S. GANPULE, V. NAGARJAN, H. LI, A. S. OGALE, D. E. STEINHAUER, S. AGGARWAL, E. WILLIAMS, R. RAMESH and P. DE WOLF, Appl. Phys. Lett. 77 (2000) 292.

    Article  CAS  Google Scholar 

  45. E. FATUZZO and W. J. MERZ, Ferroelectricity (North-Holland, Amsterdam, 1967).

  46. O. LOHSE, S. TIEDKE, M. GROSSMANN and R. WASER, Integrated Ferroelectrics 22 (1998) 123.

    CAS  Google Scholar 

  47. B. J. RODRIGUEZ, R. J. NEMANICH, A. KINGON, A. GRUVERMAN, S. V. KALININ, K. TERABE, X. Y. LIU and K. KITAMURA, Appl. Phys. Lett. 86 (2005) 012906.

    Article  Google Scholar 

  48. A. AGRONIN, Y. ROSENWAKS and G. ROSENMAN, Appl. Phys. Lett. 85 (2004) 452.

    Article  CAS  Google Scholar 

  49. For pulse duration of 10 ms this linear behavior holds at least up to 250 V.

  50. S. V. KALININ, A. GRUVERMAN, J. SHIN, A. P. BADDORF, E. KARAPETIAN and M. KACHANOV, cond-mat/0406383.

  51. E. J. MELE, Am. J. Phys. 69 (2001) 557.

    Article  CAS  Google Scholar 

  52. R. C. MILLER and G. WEINREICH, Phys. Rev. 117 (1960) 1460.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gruverman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruverman, A., Kalinin, S.V. Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J Mater Sci 41, 107–116 (2006). https://doi.org/10.1007/s10853-005-5946-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-5946-0

Keywords

Navigation