Journal of Materials Science

, Volume 41, Issue 1, pp 107–116 | Cite as

Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics

  • A. GruvermanEmail author
  • S. V. Kalinin


In this paper, we review recent advances in piezoresponse force microscopy (PFM) with respect to nanoscale ferroelectric research, summarize the basic principles of PFM, illustrate what information can be obtained from PFM experiments and delineate the limitations of PFM signal interpretation relevant to quantitative imaging of a broad range of piezoelectrically active materials. Particular attention is given to orientational PFM imaging and data interpretation as well as to electromechanics and kinetics of nanoscale ferroelectric switching in PFM.


Lithium Niobate Ferroelectric Material Piezoresponse Force Microscopy Domain Wall Velocity Domain Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. SARID, Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces, Oxford Series in Optical and Imaging Sciences (University Press, Oxford, 1991).Google Scholar
  2. 2.
    R. WIESENDANGER, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (University Press, Cambridge, 1994).Google Scholar
  3. 3.
    D. A. BONNELL, Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications (John Wiley & Sons, October 2000).Google Scholar
  4. 4.
    V. TSUKRUK, Advances in Scanning Probe Microscopy (Macromolecular Symposia 167), (John Wiley & Sons, July 2001).Google Scholar
  5. 5.
    A. DE STEFANIS and A. A. G. TOMLINSON, Scanning Probe Microscopies: From Surfaces Structure to Nano-Scale Engineering, Trans Tech Publications, Ltd.; April 2001.Google Scholar
  6. 6.
    T. TYBELL, P. PARUCH, T. GIAMARCHI and J.-M. TRISCONE, Phys. Rev. Lett. 89 (2002) 097601.CrossRefGoogle Scholar
  7. 7.
    K. TERABE, M. NAKAMURA, S. TAKEKAWA, K. KITAMURA, S. HIGUCHI, Y. GOTOH and Y. CHO, Appl. Phys. Lett. 82 (2003) 433.CrossRefGoogle Scholar
  8. 8.
    S. V. KALININ, D. A. BONNELL, T. ALVAREZ, X. LEI, Z. HU, J. H. FERRIS, Q. ZHANG and S. DUNN, Nano Letters 2 (2002) 589.CrossRefGoogle Scholar
  9. 9.
    S. V. KALININ, D. A. BONNELL, T. ALVAREZ, X. LEI, Z. HU, R. SHAO and J. H. FERRIS, Adv. Mat. 16 (2004) 795.CrossRefGoogle Scholar
  10. 10.
    See, for example, references in A. Gruverman, in “Encyclopedia of Nanoscience and Nanotechnology”, edited by H.S.Nalwa, (American Scientific Publishers, Los Angeles, Vol. 3, 2004) pp. 359–375.Google Scholar
  11. 11.
    W. G. CADY, Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals (Dover Publications, New York, 1964).Google Scholar
  12. 12.
    A. F. DEVONSHIRE, Philos. Mag. 40 (1949) 1040.Google Scholar
  13. 13.
    A. F. DEVONSHIRE, Adv. Phys. 3 (1954) 85.CrossRefGoogle Scholar
  14. 14.
    P. GUTHNER and K. DRANSFELD, Appl. Phys. Lett. 61 (1992) 1137.CrossRefGoogle Scholar
  15. 15.
    K. FRANKE, J. BESOLD, W. HAESSLE and C. SEEGEBARTH, Surf. Sci. Lett. 302 (1994) L283.CrossRefGoogle Scholar
  16. 16.
    A. GRUVERMAN, H. TOKUMOTO, S. A. PRAKASH, S. AGGARWAL, B. YANG, M. WUTTIG, R. RAMESH, O. AUCIELLO and V. VENKATESAN, Appl. Phys. Lett. 71 (1997) 3492.CrossRefGoogle Scholar
  17. 17.
    T. HIDAKA, T. MARUYAMA, M. SAITOH, N. MIKOSHIBA, M. SHIMIZU, T. SHIOSAKI, L. A. WILLS, R. HISKES, S. A. DICAROLIS and J. AMANO, Appl. Phys. Lett. 68 (1996) 2358.CrossRefGoogle Scholar
  18. 18.
    S. V. KALININ, E. KARAPETIAN and M. KACHANOV, Phys. Rev. B 70 (2004) 184101.Google Scholar
  19. 19.
    E. KARAPETIAN, M. KACHANOV and S. V. KALININ, Phil. Mag., in printGoogle Scholar
  20. 20.
    S. V. KALININ and D. A. BONNELL, Phys. Rev. B 65 (2002) 125408.Google Scholar
  21. 21.
    Nanoscale Characterization of Ferroelectric Materials, edited by M. Alexe and A. Gruverman (Springer-Verlag, Berlin, 2004).Google Scholar
  22. 22.
    L. M. ENG, H.-J. GÜNTHERODT, G. ROSENMAN, A. SKLIAR, M. ORON, M. KATZ and D. EGER, J. Appl. Phys. 83 (1998) 5973.CrossRefGoogle Scholar
  23. 23.
    L. M. ENG, H.-J. GUNTHERODT, G. A. SCHNEIDER, U. KOPKE and J. M. SALDANA, Appl. Phys. Lett. 74 (1999) 233.CrossRefGoogle Scholar
  24. 24.
    A. ROELOFS, U. BÖTTGER, R. WASER, F. SCHLAPHOF, S. TROGISCH and L. M. ENG, Appl. Phys. Lett. 77 (2000) 3444.CrossRefGoogle Scholar
  25. 25.
    B. J. RODRIGUEZ, A. GRUVERMAN, A. I. KINGON, R. J. NEMANICH and J. S. CROSS, J. Appl. Phys. 95 (2004) 1958.CrossRefGoogle Scholar
  26. 26.
    Mathematika 5.0, Wolfram Research.Google Scholar
  27. 27.
    S. V. KALININ, B. J. RODRIGUEZ, S. JESSE, J. SHIN, A.P. BADDORF, P. GUPTA, H. JAIN, D.B. WILLIAMS and A. GRUVERMAN, unpublished.Google Scholar
  28. 28.
    R. E. NEWNHAM, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, 2005).Google Scholar
  29. 29.
    M. ABPLANALP, PhD thesis, Swiss Federal Institute of Technology, Zurich (2001).Google Scholar
  30. 30.
    M. ABPLANALP, J. FOUSEK and P. GUNTER, Phys. Rev. Lett. 86 (2001) 5799.CrossRefGoogle Scholar
  31. 31.
    Equation 10 is valid only for l d > r d. To avoid this limitation, used here was the expression for the demagnetization factor for prolate ellipsoid from J. A. OSBORN, Phys. Rev. 67 (1945) 351.Google Scholar
  32. 32.
    F. JONA and G. SHIRANE, Ferroelectric Crystals, (Dover Publications, New York, 1993).Google Scholar
  33. 33.
    M. MOLOTSKII, J. Appl. Phys. 93 (2003) 6234.CrossRefGoogle Scholar
  34. 34.
    M. MOLOTSKII, A. AGRONIN, P. URENSKI, M. SHVEBELMAN, G. ROSENMAN and Y. ROSENWAKS, Phys. Rev. Lett. 90 (2003) 107601.CrossRefGoogle Scholar
  35. 35.
    S. V. KALININ, A. GRUVERMAN, B. J. RODRIGUEZ, J. SHIN, A. P. BADDORF, E. KARAPETIAN and M. KACHANOV, J. Appl. Phys. 97, 074305 (2005).Google Scholar
  36. 36.
    B. D. HUEY, in “Nanoscale Phenomena in Ferroelectric Thin Films,” edited by S. Hong (Kluwer Academic Publishers, 2004).Google Scholar
  37. 37.
    M. ALEXE, A. GRUVERMAN, C. HARNAGEA, N. D. ZAKHAROV, A. PIGNOLET, D. HESSE and J. F. SCOTT, Appl. Phys. Lett. 75 (1999) 1158.CrossRefGoogle Scholar
  38. 38.
    S. HONG, J. WOO, H. SHIN, J. U. JEON, Y. E. PAK, E. L. COLLA, N. SETTER, E. KIM and K. NO, J. Appl. Phys. 89 (2001) 1377.CrossRefGoogle Scholar
  39. 39.
    C. HARNAGEA, A. PIGNOLET, M. ALEXE and D. HESSE, Integrated Ferroelectrics 38 (2001) 23.Google Scholar
  40. 40.
    C. HARNAGEA, PhD thesis, Martin-Luther-Universität Halle Wittenberg, Halle, 2001.Google Scholar
  41. 41.
    S. V. KALININ, A. GRUVERMAN and D. A. BONNELL, Appl. Phys. Lett. 85 (2004) 795.CrossRefGoogle Scholar
  42. 42.
    Shown here are PFM images representing the A cos θ signal, where A is piezoresponse amplitude and θ is phase.Google Scholar
  43. 43.
    A. GRUVERMAN, A. PIGNOLET, K. M. SATYALAKSHMI, M. ALEXE, N. D. ZAKHAROV and D. HESSE, Appl. Phys. Lett. 76 (2000) 106.CrossRefGoogle Scholar
  44. 44.
    C. S. GANPULE, V. NAGARJAN, H. LI, A. S. OGALE, D. E. STEINHAUER, S. AGGARWAL, E. WILLIAMS, R. RAMESH and P. DE WOLF, Appl. Phys. Lett. 77 (2000) 292.CrossRefGoogle Scholar
  45. 45.
    E. FATUZZO and W. J. MERZ, Ferroelectricity (North-Holland, Amsterdam, 1967).Google Scholar
  46. 46.
    O. LOHSE, S. TIEDKE, M. GROSSMANN and R. WASER, Integrated Ferroelectrics 22 (1998) 123.Google Scholar
  47. 47.
    B. J. RODRIGUEZ, R. J. NEMANICH, A. KINGON, A. GRUVERMAN, S. V. KALININ, K. TERABE, X. Y. LIU and K. KITAMURA, Appl. Phys. Lett. 86 (2005) 012906.CrossRefGoogle Scholar
  48. 48.
    A. AGRONIN, Y. ROSENWAKS and G. ROSENMAN, Appl. Phys. Lett. 85 (2004) 452.CrossRefGoogle Scholar
  49. 49.
    For pulse duration of 10 ms this linear behavior holds at least up to 250 V.Google Scholar
  50. 50.
    S. V. KALININ, A. GRUVERMAN, J. SHIN, A. P. BADDORF, E. KARAPETIAN and M. KACHANOV, cond-mat/0406383.Google Scholar
  51. 51.
    E. J. MELE, Am. J. Phys. 69 (2001) 557.CrossRefGoogle Scholar
  52. 52.
    R. C. MILLER and G. WEINREICH, Phys. Rev. 117 (1960) 1460.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.North Carolina State UniversityRaleigh
  2. 2.Oak Ridge National LaboratoryOak Ridge

Personalised recommendations