Skip to main content
Log in

Self-assembled nanoscale ferroelectrics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multifunctional ferroelectric materials offer a wide range of useful properties, from switchable polarization that can be applied in memory devices to piezoelectric and pyroelectric properties used in actuators, transducers and thermal sensors. At the nanometer scale, however, material properties are expected to be different from those in bulk. Fundamental problems such as the super-paraelectric limit, the influence of the free surface, and of interfacial and bulk defects on ferroelectric switching, etc., arise when scaling down ferroelectrics to nanometer sizes. In order to study these size effects, fabrication methods of high quality nanoscale ferroelectric crystals have to be developed. The present paper briefly reviews self-patterning and self-assembly fabrication methods, including chemical routes, morphological instability of ultrathin films, microemulsion, and self-assembly lift-off, employed up to the date to fabricate ferroelectric structures with lateral sizes in the range of few tens of nanometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. O. AUCIELLO, J. F. SCOTT and R. RAMESH, Physics Today 51 (1998) 22.

    CAS  Google Scholar 

  2. D. J. EAGLESHAM and M. CERULLO, Phys. Rev. Lett. 64 (1990) 1943.

    Article  CAS  Google Scholar 

  3. R. L. SELLIN, C. RIBBAT, M. GRUNDMANN, N. N. LEDENTSOV and D. BIMBERG, Appl. Phys. Lett. 78 (2001) 1207.

    Article  CAS  Google Scholar 

  4. Y. LIN, H. SKAFF, T. EMRICK, A. D. DINSMORE and T. P. RUSSELL, Science 299 (2003) 226.

    Article  CAS  Google Scholar 

  5. H. HERRIG and R. HEMPELMANN, Mater. Lett. 27 (1996) 287.

    Article  CAS  Google Scholar 

  6. M. ALEXE, J. F. SCOTT, C. CURRAN, N. D. ZAKHAROV, D. HESSE and A. PIGNOLET, Appl. Phys. Lett. 73 (1998) 1592.

    Article  CAS  Google Scholar 

  7. T. TAKAHASHI and H. IWAHARA, Mater. Res. Bull. 13 (1978) 1447.

    Article  CAS  Google Scholar 

  8. M. ALEXE, A. GRUVERMAN, C. HAMAGEA, N. D. ZAKHAROV, A. PIGNOLET, D. HESSE and J. F. SCOTT, Appl. Phys. Lett. 75 (1999) 1158.

    Article  CAS  Google Scholar 

  9. O. G. SCHMIDT and K. EBERL, Phys. Rev. B—Condensed Matt. 61 (2000) 13721.

    CAS  Google Scholar 

  10. O. G. SCHMIDT, U. DENKER, K. EBERL, O. KIENZLE, F. ERNST and R. J. HAUG, Appl. Phys. Lett. 77 (2000) 4341.

    Article  CAS  Google Scholar 

  11. H. OMI, D. J. BOTTOMLEY, Y. HOMMA and T. OGINO, Phys. Rev. B—Condensed Matt. 67 (2003) 115302.

    Google Scholar 

  12. K. S. SEOL, S. TOMITA, K. TAKEUCHI, T. MIYAGAWA, T. KATAGIRI and Y. OHKI, Appl. Phys. Lett. 81 (2002) 1893.

    Article  CAS  Google Scholar 

  13. A. VISINOIU, Private communication (2001).

  14. E. VASCO, R. DITTMANN, S. KARTHAUSER and R. WASER, Appl. Phys. Lett. 82 (2003) 2497.

    Article  CAS  Google Scholar 

  15. S. KARTHAUSER, E. VASCO, R. DITTMANN and R. WASER, Nanotechnology 15 (2004) S122.

    Article  CAS  Google Scholar 

  16. M. SHIMIZU, M. SUGIYAMA, H. FUJISAWA, T. HAMANO, T. SHIOSAKI and K. MATSUSHIGE, J. Cryst. Gr. 145 (1994) 226.

    Article  CAS  Google Scholar 

  17. H. FUJISAWA, K. MORIMOTO, M. SHIMIZU, H. NIU, K. HONDA and S. OHTANI, Japan Soc. Appl. Phys. Japanese J. Appl. Phys. Part 1—Regular Papers Short Notes & Review Papers 39 (2000) 5446.

    CAS  Google Scholar 

  18. F. FUJISAWA, K. MORIMOTO, M. SHIMIZU, H. NIU, K. HONDA and S. OHTANI, Ferroelectric Thin Films IX. Symposium (Materials Research Society Symposium Proceedings Vol. 655). Mater. Res. Soc. (2001) CC10.

  19. P. MURALT, S. BUHLMANN and S. VON ALLMEN, Mater. Res. Soc. Symposium Proceedings 784 (2004) 13.

    Google Scholar 

  20. S. BUHLMANN, P. MURALT and S. VON ALLMEN, Appl. Phys. Lett. 84 (2004) 2614.

    Article  CAS  Google Scholar 

  21. K. D. BUDD, S. K. DEY and D. A. PAYNE, Brit. Ceram. Proc. (1985) 107.

  22. T. SCHNELLER and R. WASER, Ferroelectrics 267 (2002) 293.

    Article  CAS  Google Scholar 

  23. A. SEIFERT, A. VOJTA, J. S. SPECK and F. F. LANGE, J. Mater. Res. 11 (1996) 1470.

    CAS  Google Scholar 

  24. K. T. MILLER, F. F. LANGE and D. B. MARSHALL, ibid. 5 (1990) 151.

    CAS  Google Scholar 

  25. R. WASER, T. SCHNELLER, S. HOFFMANN-EIFERT and P. EHRHART, Integ. Ferroelect. 36 (2001) 3.

    CAS  Google Scholar 

  26. A. ROELOFS, T. SCHNELLER, K. SZOT and R. WASER, IOP Publishing. Nanotechnology 14 (2003) 250.

    Article  CAS  Google Scholar 

  27. I. SZAFRANIAK, C. HARNAGEA, R. SCHOLZ, S. BHATTACHARYYA, D. HESSE and M. ALEXE, Appl. Phys. Lett. 83 (2003) 2211.

    Article  CAS  Google Scholar 

  28. M. DAWBER, I. SZAFRANIAK, M. ALEXE and J. F. SCOTT, J. Phys.—Condensed Matter 15 (2003) L667.

    Article  CAS  Google Scholar 

  29. V. A. SHCHUKIN, N. N. LEDENTSOV, P. S. KOPEV and D. BIMBERG, Phys. Rev. Lett. 75 (1995) 2968.

    Article  CAS  Google Scholar 

  30. R. S. WILLIAMS, G. MEDEIROS-RIBEIRO, T. I. KAMINS and D. A. A. OHLBERG, Ann. Rev. Phys. Chem. 51 (2000).

  31. M. W. CHU, I. SZAFRANIAK, R. SCHOLZ, C. HARNAGEA, D. HESSE, M. ALEXE and U. GOSELE, Nat. Mater. 3 (2004) 87.

    Article  CAS  Google Scholar 

  32. F. F. LANGE, Science 273 (1996) 903.

    CAS  Google Scholar 

  33. A. T. CHIEN, J. S. SPECK and F. F. LANGE, J. Mater. Res. 12 (1997) 1176.

    CAS  Google Scholar 

  34. A. T. CHIEN, J. S. SPECK, F. F. LANGE, A. C. DAYKIN and C. G. LEVI, ibid. 10 (1995) 1784.

    CAS  Google Scholar 

  35. A. T. CHIEN, L. ZHAO, M. COLIC, J. S. SPECK and F. F. LANGE, ibid. 13 (1998) 649.

    CAS  Google Scholar 

  36. P. BENDALE, S. VENIGALLA, J. R. AMBROSE, E. D. VERINK, JR. and J. H. ADAIR, J. Amer. Ceram. Soc. 76 (1993) 2619.

    Article  CAS  Google Scholar 

  37. I. SZAFRANIAK and M. ALEXE, Ferroelectrics 291 (2003) 19.

    Article  CAS  Google Scholar 

  38. D.F. EVANS and H. WENNERSTROM, in “The Colloid Domain. Where Physics, Chemistry and Technology Meet” (Wiley-VCH, New York, 1994).

  39. N. A. KOTOV, F. C. MELDRUN and J. H. FENDLER, J. Phys. Chem. 98 (1994) 8827.

    Article  CAS  Google Scholar 

  40. C. LIU, B. ZOU, A. J. RONDINONE and J. Z. ZHANG, J. Amer. Ceram. Soc. 123 (2001) 4344.

    Article  CAS  Google Scholar 

  41. S. O'BRIEN, L. BRUS and C. B. MURRAY, J. Amer. Chem. Soc. 123 (2001) 12085.

    Article  CAS  Google Scholar 

  42. K. LANDFESTER, Adv. Mater. 13 (2001) 756.

    Article  Google Scholar 

  43. F. JIYE, K. L. STOKES, J. WIEMANN and Z. WEILIE, Mater. Lett. 42 (2000) 113.

    Article  Google Scholar 

  44. S. BANDOW, K. KIMURA, K. KON-NO and A. KITAHARA, Japanese J. Appl. Phys. Part 1—Regular Papers Short Notes & Review Papers 26 (1987) 713.

    CAS  Google Scholar 

  45. P. AYYUB, A. N. MAITRA and D. O. SHAH, Physica C 168 (1990) 571.

    Article  CAS  Google Scholar 

  46. K. OSSEO-ASSARE, in “Handbook of Microemulsion Science and Technology”, edited by P. Kumar and K. L. Mittal (Marcel Dekker, Inc., New York, Basel, 1999) p. 549.

  47. C. BECK, W. HARTL and R. HEMPELMANN, J. Mater. Res. 13 (1998).

  48. J. WANG, J. FANG, S.-C. NG, L.-M. GAN, C. H. CHEW, X. WANG and Z. SHEN, J. Amer. Ceram. Soc. 82 (1999) 873.

    Article  CAS  Google Scholar 

  49. S. BHATTACHARYYA, S. CHATTOPADHYAY and M. ALEXE, Nanomaterials for Structural Applications. Symposium (Mater. Res. Soc. Symposium Proceedings Vol. 740). Mater. Res. Soc. (2003) 333.

  50. A. KORIOSEK, W. KANDULSKI, P. CHUDZINSKI, K. KEMPA and M. GIERSIG, Nano Lett. 4 (2004) 1359.

    Article  CAS  Google Scholar 

  51. H. W. DECKMAN and J. H. DUNSMUIR, Appl. Phys. Lett. 41 (1982) 377.

    Article  CAS  Google Scholar 

  52. J. C. HULTEEN and R. P. VAN DUYNE, J. Vac. Sci. Technol. A 13 (1995).

  53. W. MA and D. HESSE, Appl. Phys. Lett. 84 (2004) 2871.

    Article  CAS  Google Scholar 

  54. W. MA, C. HARNAGEA, D. HESSE and U. GOSELE, ibid. 83 (2003) 3770.

    Article  CAS  Google Scholar 

  55. W. MA and D. HESSE, ibid. 85 (2004) 3214.

  56. J. RYBCZYNSKI, U. EBELS and M. GIERSIG, Coll. Surf. A: Physicochem. Eng. Asp. 219 (2003) 1.

    Article  CAS  Google Scholar 

  57. M. ALEXE, C. HARNAGEA, D. HESSE and U. GOSELE, Appl. Phys. Lett. 79 (2001) 242.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexe, M., Hesse, D. Self-assembled nanoscale ferroelectrics. J Mater Sci 41, 1–11 (2006). https://doi.org/10.1007/s10853-005-5912-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-5912-x

Keywords

Navigation