Journal of Materials Science

, Volume 41, Issue 1, pp 1–11 | Cite as

Self-assembled nanoscale ferroelectrics

  • Marin Alexe
  • Dietrich Hesse


Multifunctional ferroelectric materials offer a wide range of useful properties, from switchable polarization that can be applied in memory devices to piezoelectric and pyroelectric properties used in actuators, transducers and thermal sensors. At the nanometer scale, however, material properties are expected to be different from those in bulk. Fundamental problems such as the super-paraelectric limit, the influence of the free surface, and of interfacial and bulk defects on ferroelectric switching, etc., arise when scaling down ferroelectrics to nanometer sizes. In order to study these size effects, fabrication methods of high quality nanoscale ferroelectric crystals have to be developed. The present paper briefly reviews self-patterning and self-assembly fabrication methods, including chemical routes, morphological instability of ultrathin films, microemulsion, and self-assembly lift-off, employed up to the date to fabricate ferroelectric structures with lateral sizes in the range of few tens of nanometers.


Pulse Laser Deposition Lateral Size Barium Titanate Microstructural Instability Ferroelectric Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. AUCIELLO, J. F. SCOTT and R. RAMESH, Physics Today 51 (1998) 22.Google Scholar
  2. 2.
    D. J. EAGLESHAM and M. CERULLO, Phys. Rev. Lett. 64 (1990) 1943.CrossRefGoogle Scholar
  3. 3.
    R. L. SELLIN, C. RIBBAT, M. GRUNDMANN, N. N. LEDENTSOV and D. BIMBERG, Appl. Phys. Lett. 78 (2001) 1207.CrossRefGoogle Scholar
  4. 4.
    Y. LIN, H. SKAFF, T. EMRICK, A. D. DINSMORE and T. P. RUSSELL, Science 299 (2003) 226.CrossRefGoogle Scholar
  5. 5.
    H. HERRIG and R. HEMPELMANN, Mater. Lett. 27 (1996) 287.CrossRefGoogle Scholar
  6. 6.
    M. ALEXE, J. F. SCOTT, C. CURRAN, N. D. ZAKHAROV, D. HESSE and A. PIGNOLET, Appl. Phys. Lett. 73 (1998) 1592.CrossRefGoogle Scholar
  7. 7.
    T. TAKAHASHI and H. IWAHARA, Mater. Res. Bull. 13 (1978) 1447.CrossRefGoogle Scholar
  8. 8.
    M. ALEXE, A. GRUVERMAN, C. HAMAGEA, N. D. ZAKHAROV, A. PIGNOLET, D. HESSE and J. F. SCOTT, Appl. Phys. Lett. 75 (1999) 1158.CrossRefGoogle Scholar
  9. 9.
    O. G. SCHMIDT and K. EBERL, Phys. Rev. B—Condensed Matt. 61 (2000) 13721.Google Scholar
  10. 10.
    O. G. SCHMIDT, U. DENKER, K. EBERL, O. KIENZLE, F. ERNST and R. J. HAUG, Appl. Phys. Lett. 77 (2000) 4341.CrossRefGoogle Scholar
  11. 11.
    H. OMI, D. J. BOTTOMLEY, Y. HOMMA and T. OGINO, Phys. Rev. B—Condensed Matt. 67 (2003) 115302.Google Scholar
  12. 12.
    K. S. SEOL, S. TOMITA, K. TAKEUCHI, T. MIYAGAWA, T. KATAGIRI and Y. OHKI, Appl. Phys. Lett. 81 (2002) 1893.CrossRefGoogle Scholar
  13. 13.
    A. VISINOIU, Private communication (2001).Google Scholar
  14. 14.
    E. VASCO, R. DITTMANN, S. KARTHAUSER and R. WASER, Appl. Phys. Lett. 82 (2003) 2497.CrossRefGoogle Scholar
  15. 15.
    S. KARTHAUSER, E. VASCO, R. DITTMANN and R. WASER, Nanotechnology 15 (2004) S122.CrossRefGoogle Scholar
  16. 16.
    M. SHIMIZU, M. SUGIYAMA, H. FUJISAWA, T. HAMANO, T. SHIOSAKI and K. MATSUSHIGE, J. Cryst. Gr. 145 (1994) 226.CrossRefGoogle Scholar
  17. 17.
    H. FUJISAWA, K. MORIMOTO, M. SHIMIZU, H. NIU, K. HONDA and S. OHTANI, Japan Soc. Appl. Phys. Japanese J. Appl. Phys. Part 1—Regular Papers Short Notes & Review Papers 39 (2000) 5446.Google Scholar
  18. 18.
    F. FUJISAWA, K. MORIMOTO, M. SHIMIZU, H. NIU, K. HONDA and S. OHTANI, Ferroelectric Thin Films IX. Symposium (Materials Research Society Symposium Proceedings Vol. 655). Mater. Res. Soc. (2001) CC10.Google Scholar
  19. 19.
    P. MURALT, S. BUHLMANN and S. VON ALLMEN, Mater. Res. Soc. Symposium Proceedings 784 (2004) 13.Google Scholar
  20. 20.
    S. BUHLMANN, P. MURALT and S. VON ALLMEN, Appl. Phys. Lett. 84 (2004) 2614.CrossRefGoogle Scholar
  21. 21.
    K. D. BUDD, S. K. DEY and D. A. PAYNE, Brit. Ceram. Proc. (1985) 107.Google Scholar
  22. 22.
    T. SCHNELLER and R. WASER, Ferroelectrics 267 (2002) 293.CrossRefGoogle Scholar
  23. 23.
    A. SEIFERT, A. VOJTA, J. S. SPECK and F. F. LANGE, J. Mater. Res. 11 (1996) 1470.Google Scholar
  24. 24.
    K. T. MILLER, F. F. LANGE and D. B. MARSHALL, ibid. 5 (1990) 151.Google Scholar
  25. 25.
    R. WASER, T. SCHNELLER, S. HOFFMANN-EIFERT and P. EHRHART, Integ. Ferroelect. 36 (2001) 3.Google Scholar
  26. 26.
    A. ROELOFS, T. SCHNELLER, K. SZOT and R. WASER, IOP Publishing. Nanotechnology 14 (2003) 250.CrossRefGoogle Scholar
  27. 27.
    I. SZAFRANIAK, C. HARNAGEA, R. SCHOLZ, S. BHATTACHARYYA, D. HESSE and M. ALEXE, Appl. Phys. Lett. 83 (2003) 2211.CrossRefGoogle Scholar
  28. 28.
    M. DAWBER, I. SZAFRANIAK, M. ALEXE and J. F. SCOTT, J. Phys.—Condensed Matter 15 (2003) L667.CrossRefGoogle Scholar
  29. 29.
    V. A. SHCHUKIN, N. N. LEDENTSOV, P. S. KOPEV and D. BIMBERG, Phys. Rev. Lett. 75 (1995) 2968.CrossRefGoogle Scholar
  30. 30.
    R. S. WILLIAMS, G. MEDEIROS-RIBEIRO, T. I. KAMINS and D. A. A. OHLBERG, Ann. Rev. Phys. Chem. 51 (2000).Google Scholar
  31. 31.
    M. W. CHU, I. SZAFRANIAK, R. SCHOLZ, C. HARNAGEA, D. HESSE, M. ALEXE and U. GOSELE, Nat. Mater. 3 (2004) 87.CrossRefGoogle Scholar
  32. 32.
    F. F. LANGE, Science 273 (1996) 903.Google Scholar
  33. 33.
    A. T. CHIEN, J. S. SPECK and F. F. LANGE, J. Mater. Res. 12 (1997) 1176.Google Scholar
  34. 34.
    A. T. CHIEN, J. S. SPECK, F. F. LANGE, A. C. DAYKIN and C. G. LEVI, ibid. 10 (1995) 1784.Google Scholar
  35. 35.
    A. T. CHIEN, L. ZHAO, M. COLIC, J. S. SPECK and F. F. LANGE, ibid. 13 (1998) 649.Google Scholar
  36. 36.
    P. BENDALE, S. VENIGALLA, J. R. AMBROSE, E. D. VERINK, JR. and J. H. ADAIR, J. Amer. Ceram. Soc. 76 (1993) 2619.CrossRefGoogle Scholar
  37. 37.
    I. SZAFRANIAK and M. ALEXE, Ferroelectrics 291 (2003) 19.CrossRefGoogle Scholar
  38. 38.
    D.F. EVANS and H. WENNERSTROM, in “The Colloid Domain. Where Physics, Chemistry and Technology Meet” (Wiley-VCH, New York, 1994).Google Scholar
  39. 39.
    N. A. KOTOV, F. C. MELDRUN and J. H. FENDLER, J. Phys. Chem. 98 (1994) 8827.CrossRefGoogle Scholar
  40. 40.
    C. LIU, B. ZOU, A. J. RONDINONE and J. Z. ZHANG, J. Amer. Ceram. Soc. 123 (2001) 4344.CrossRefGoogle Scholar
  41. 41.
    S. O'BRIEN, L. BRUS and C. B. MURRAY, J. Amer. Chem. Soc. 123 (2001) 12085.CrossRefGoogle Scholar
  42. 42.
    K. LANDFESTER, Adv. Mater. 13 (2001) 756.CrossRefGoogle Scholar
  43. 43.
    F. JIYE, K. L. STOKES, J. WIEMANN and Z. WEILIE, Mater. Lett. 42 (2000) 113.CrossRefGoogle Scholar
  44. 44.
    S. BANDOW, K. KIMURA, K. KON-NO and A. KITAHARA, Japanese J. Appl. Phys. Part 1—Regular Papers Short Notes & Review Papers 26 (1987) 713.Google Scholar
  45. 45.
    P. AYYUB, A. N. MAITRA and D. O. SHAH, Physica C 168 (1990) 571.CrossRefGoogle Scholar
  46. 46.
    K. OSSEO-ASSARE, in “Handbook of Microemulsion Science and Technology”, edited by P. Kumar and K. L. Mittal (Marcel Dekker, Inc., New York, Basel, 1999) p. 549.Google Scholar
  47. 47.
    C. BECK, W. HARTL and R. HEMPELMANN, J. Mater. Res. 13 (1998).Google Scholar
  48. 48.
    J. WANG, J. FANG, S.-C. NG, L.-M. GAN, C. H. CHEW, X. WANG and Z. SHEN, J. Amer. Ceram. Soc. 82 (1999) 873.CrossRefGoogle Scholar
  49. 49.
    S. BHATTACHARYYA, S. CHATTOPADHYAY and M. ALEXE, Nanomaterials for Structural Applications. Symposium (Mater. Res. Soc. Symposium Proceedings Vol. 740). Mater. Res. Soc. (2003) 333.Google Scholar
  50. 50.
    A. KORIOSEK, W. KANDULSKI, P. CHUDZINSKI, K. KEMPA and M. GIERSIG, Nano Lett. 4 (2004) 1359.CrossRefGoogle Scholar
  51. 51.
    H. W. DECKMAN and J. H. DUNSMUIR, Appl. Phys. Lett. 41 (1982) 377.CrossRefGoogle Scholar
  52. 52.
    J. C. HULTEEN and R. P. VAN DUYNE, J. Vac. Sci. Technol. A 13 (1995).Google Scholar
  53. 53.
    W. MA and D. HESSE, Appl. Phys. Lett. 84 (2004) 2871.CrossRefGoogle Scholar
  54. 54.
    W. MA, C. HARNAGEA, D. HESSE and U. GOSELE, ibid. 83 (2003) 3770.CrossRefGoogle Scholar
  55. 55.
    W. MA and D. HESSE, ibid. 85 (2004) 3214.Google Scholar
  56. 56.
    J. RYBCZYNSKI, U. EBELS and M. GIERSIG, Coll. Surf. A: Physicochem. Eng. Asp. 219 (2003) 1.CrossRefGoogle Scholar
  57. 57.
    M. ALEXE, C. HARNAGEA, D. HESSE and U. GOSELE, Appl. Phys. Lett. 79 (2001) 242.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Marin Alexe
    • 1
  • Dietrich Hesse
    • 1
  1. 1.Max Planck Institute of Microstructure PhysicsHalleGermany

Personalised recommendations