Abstract
As the miniaturization of electronic devices continues to demand smaller and uniform particle size of the powders, size control of the powder becomes critical. Under carefully controlled experimental conditions, nanocrystalline BaTiO3 particles have been prepared by ambient condition sol process. Soluble precursors of barium and titanium in water have been used to produce a mixed metallic gel using KOH as the mineralizer. The gel was peptized and crystallized in water under refluxing condition. The effect of various experimental parameters such as the starting Ba/Ti ratio, temperature, time, and additives on the size of the crystallites have been investigated. A higher Ba/Ti ratio in the precursor solution led to smaller crystallite sizes of BaTiO3 particles. A higher temperature of refluxing had a positive effect of producing smaller crystallites, as well as particle sizes of the resulting powder. Using a polymeric surface modifier during BaTiO3 synthesis led to a smaller particle size and increased re-dispersibility of the particles in water. The duration of refluxing was determined to have a minimal effect on the resulting particle size. The powders have been characterized by X-ray diffractometry for phase purity, and by dynamic light scattering for particle size. Field emission scanning electron microscopy and transmission electron microscopy have been utilized to examine the morphology of the particles.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
B. I. LEE, M. WANG, D. YOON and M. HU, J. Cer. Proc. Research 4 (2003) 17.
S. W. LU, B. I. LEE, Z. L. WANG and W. D. SAMUELS, J. Crystal Growth 219 (2003) 269.
A. BAUGER, J. C. MUTIN and J. C. NIEPCE, J. Mater. Sci. 18 (1983) 3041.
M. S. H. CHU and A. M. RAE, Am. Ceram. Soc. Bull. 74 (1995) 69.
P. P. PHULE and S. H. RISBUD, J. Mater. Sci. 25 (1990) 1169.
M. C. B. LOPEZ, G. FOURLARIS, B. RAND and F. L. RILEY, J. Am. Ceram. Soc. 82 (1999) 1777.
I. MACLAREN and C. B. PONTON, J. Euro. Ceram. Soc. 20 (2000) 1267.
W. HERTL, J. Am. Ceram. Soc. 71 (1988) 879.
R. VIVEKANANDAN and Y. R. N. KUTTY, Powder Technology 57 (1989) 181.
D. HENNINGS, G. ROSENSTEIN and H. SCHREINEMACHER, J. Euro. Ceram. Soc. 8 (1991) 107.
D. HENNINGS and S. SCHREINEMACHER, J. Euro. Ceram. Soc. 9 (1992) 41.
P. K. DUTTA, R. ASIAIE, S. A. AKBAR and W. D. ZHU, Chem. Mater. 6 (1994) 1542.
C. T. XIA, E. W. SHI, W. Z. ZHONG and J. K. GUO, J. Euro. Ceram. Soc. 15 (1995) 1171.
J. O. ECKERT JR., C. C. H. HOUST, B. L. GERSTEN, M. M. LENCKA and R. E. RIMAN, J. Am. Ceram. Soc. 79 (1996) 2929.
R. ASIAIE, W. D. ZHU, S. A. AKBAR and P. K. DUTTA, Chem. Mater. 8 (1996) 226.
E. W. SHI, C. T. XIA, W. Z. ZHONG, B. G. WANG and C. D. FENG, J. Am. Ceram. Soc. 80 (1997) 1567.
W. D. ZHU, S. A. AKBAR, R. ASIAIE and P. K. DUTTA, J. Appl. Phys. 36 (1997) 214.
D. HENNINGS, C. METZMACHER and B. C. SCHREINEMACHER, J. Am. Ceram. Soc. 84 (2001) 179.
S. UREK and M. DROFENIK, J. Euro. Ceram. Soc. 18 (1998) 279.
P. PINCELOUP, C. COURTOIS, A. LERICHE and B. THIERRY, J. Am. Ceram. Soc. 82 (1999) 3049.
I. J. CLARK, T. TAKEUCHI, N. OHTORI and D. SINCLAIR, J. Mater. Chem. 9 (1999) 83.
M. Z. HU, G. A. MILLER, E. A. PAYZANT and C. J. RAWN, J. Mater. Sci. 35 (2000) 2927.
M. Z. HU, V. KURIAN, E. A. PAYZANT, C. J. RAWN and R. D. HUNT, Powder Technology 110 (2000) 2.
H. R. XU, L. GAO and J. K. GUO, J. Euro. Ceram. Soc. 22 (2002) 1163.
E. CIFTCI, M. N. RAHAMAN and M. SHUMSKY, J. Mater. Sci. 36 (2001) 4875.
P. NANNI, M. LEONI, V. BUSCAGLIA and G. ALIPANDI, J. Euro. Ceram. Soc. 14 (1996) 85.
M. LEONI, M. VIVIANI, P. NANNI and V. BUSCAGLIA, J. Mater. Sci. Lett. 15 (1996) 1302.
M. VIVIANI, J. LEMAITRE, M. T. BUSCAGLIA and P. NANNI, J. Euro. Ceram. Soc. 20 (2000) 315.
H. SHIMOOKA and M. KUWABARA, J. Am. Ceram. Soc. 79 (1996) 2983.
M. H. FREY and D. H. PAYNE, Chem. Mater. 7 (1995) 123.
H. MATSUDA, M. KUWABARA, K. YAMADA, H. SHIMOOKA and S. TAKAHASHI, J. Am. Ceram. Soc. 81 (1998) 3010.
B. I. LEE and J. P. ZHANG, Thin Solid Films. 388 (2001) 107.
H. MATSUDA, N. KOBAYASHI, T. KOBAYASHI, K. MIYAZAWA and M. KUWABARA, J. Non-Cryst. Solids. 271 (2000) 162.
H. P. BECK, W. EISER and R. HABERKORN, J. Euro. Ceram. Soc. 21 (2001) 687.
S. WADA, H. CHIKAMORI, T. NOMA and T. SUZUKI, J. Mater. Sci. 35 (2000) 4857.
S. WADA, T. TSURUMI, H. CHIKAMORI, T. NOMA and T. SUZUKI, J. of Cryst. Growth 229 (2001) 433.
T. V. ANURADHA, S. RANGANATHAN, T. MIMANI and K. C. PATIL, Scripta Mater. 44 (2001) 2237.
M. STOCKENHUBER and H. MAYER and J. A. LERCHER, J. Am. Ceram. Soc. 76 (1993) 1185.
P. K. GALLAGHER and F. SCHREY, ibid. 46 (1963) 567.
J. WANG, J. FANG, L. M. GAN, C. H. CHEW, X. B. WANG and Z. X. SHEN, J. Am Ceram. Soc. 82 (1999) 873.
P. P. PHULE and S. H. RISBUD, J. Mater. Sci. 25 (1990) 1169
B. I. LEE and L. A. MANN, Annual Report to National Science Foundation, Jan. 2001.
D. YOON and B. I. LEE, J. Ceram. Proc. Res. 3 (2002) 1
G. BUSCA, V. BUSCAGLIA, M. LEONI and P. NANNI, Chem. Mater. 6 (1994) 955.
S. O’BRIEN, L. BRUS and C. B. MURRY, J. Am Ceram. Soc. 123 (2001) 12085.
X. WANG, B. I. LEE, M. HU, E. A. PAYZANT and D. A. BLOM, J. Mater. Sci. Lett. 22 (2003) 557.
X. WANG, B. I. LEE, M. HU, E. A. PAYZANT and D. A. BLOM, J. Mater. Sci. Mater. Electr. 14 (2003) 495.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Devaraju, N.G., Lee, B.I., Wang, X. et al. Tailoring size of BaTiO3 nanocrystals via ambient conditions sol process. J Mater Sci 41, 3335–3340 (2006). https://doi.org/10.1007/s10853-005-5390-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-005-5390-1

