Skip to main content
Log in

Linear and non-linear optical transmission from multi-walled carbon nanotubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The multi walled carbon nanotubes grown by the CVD technique were suspended in methanol and their linear and non-linear transmission properties have been studied. It is observed that the linear transmission spectrum, measured in the range 450–1100 nm, depicts features similar to those of single walled nanotubes. The observed features may be well characterized as the van-Hove singularities of the one-dimensional electronic density of states. Further, excellent non-linear optical properties have been observed in these suspensions. Experiments are conducted to study the optical limiting behavior in the visible (532 nm) as well as in the near infra-red (1064 nm) region by using a dual beam pulsed pump-CW probe, technique. The grown multi walled carbon nanotubes show a strong limiting behavior at both of these wavelengths. The recovery time as observed from the probe beam transmission is measured at different values of the incident pulse energy. The results are discussed in the light of the existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. DRESSALHAUS, G.DRESSALHAUS and Ph. AVOURIS Ed. “Carbon Nanotubes: Synthesis, Structure, Properties and Applications” (Springer-Verlag Berlin, 2001) Vol. 80.

    Google Scholar 

  2. W. G. WILDOER, L. C. VENEMA, A. G. RINZLER, R. E. SMALLEY and C. DEKKER, Nature 391 (1998) 59.

    Article  Google Scholar 

  3. T. W. ODOM, J. L. HUANG, P. KIM and C. M. LIEBER, ibid. 391(1998) 62.

    Article  Google Scholar 

  4. T. W. ODOM, J. H. HAFNER and C. M. LIEBER, in “Carbon Nanotubes: Synthesis, Structure, Properties and Applications” (Springer Series, 2001) Vol. 80, p. 173.

  5. A. M. RAO, E. RICHTER, S. BANDOW, B. CHASE, P. C. ECKLUND, K. W. WILLIAMS, M. MENON, K. R. SUBBASWAMY, A. THESS, R. E. SMALLEY, G. DRESSELHAUS and M. S. DRESSELHAUS, Science 275 (1997) 187.

    Article  PubMed  Google Scholar 

  6. A. KASUYA, Y. SASAKI, Y. SAITO, K. TOHJI and Y. NISHINA, Phys. Rev. Lett. 78 (1997) 4434.

    Article  Google Scholar 

  7. S. KAZAOUI, N. MINAMI, R. JACQUEMIN, H. KATAURA and Y. ACHIBA, Phys. Rev. B 60 (1999) 13339.

    Article  Google Scholar 

  8. M. J. O’CONNEL, S. M. BACHILO, C. B. HUFFMAN, V. C. MOORE, M. S. STRANS, E. H. HAROZ, K. L. RIALON, P. J. BOUL, W. H. NOON, C. KITTREL, J. MA, R. H. HAUGE, R. B. WIESMAN and R. E. SMALLEY, Science 297 (2002) 593.

    Article  PubMed  Google Scholar 

  9. M. E. BRENNAN, J. N. COLEMAN, A. DRURY, B. LAHR, T. KOBAYASHI and W. J. BLAU, Opt. Lett. 28 (2003) 266.

    PubMed  Google Scholar 

  10. C. STANCIU, R. EHLICH, V. PETROV, O. STEINKELLNER, J. HERMANN, I. V. HERTEL, G. Ya. SLEPYAN, A. A. KHRUTCHINSKI, S. A. MAKSIMENKO, F. ROTERMUND, E. E. B. CAMPBELL and F. ROHMUND, Appl. Phys. Lett. 81 (2002) 4064.

    Article  Google Scholar 

  11. Y. C. CHEN, N. R. RARAVIKAR, L. C. SCHADLER, P. M. AJAYAN, Y. P. ZHAO, T. M. LU, G. C. WANG and X. C. Zhang, Appl. Phys. Lett. 81 (2002) 975.

    Article  Google Scholar 

  12. P. CHEN, X. WU, X. SUN, J. LIN, W. JI and K. L. TAN, Phys. Rev. Lett. 82 (1999) 2548.

    Article  Google Scholar 

  13. J. E. RIGGS, D. B. WALKER, D. L. CARROL and YA-PING SUN, J. Phys. Chem. B 104 (2000) 7071.

    Article  Google Scholar 

  14. S. R. MISHRA, H. S. RAWAT, S. C. MEHENDALE, K. C. RUSTAGI, A. K. SOOD, R. BANDYOPADHYAY, A. GOVINGRAJ and C. N. R. RAO, Chem. Phys. Lett. 317 (2000) 510.

    Article  Google Scholar 

  15. L. VIVIEN, D. RIEHL, E. ANGLARET and F. HACHE, IEEE J. Quant. Electron. 36 (2000) 680.

    Article  Google Scholar 

  16. L. VIVIEN, D. RIEHL, P. LANCON, F. HACHE and E. ANGLARET, Opt. Lett. 26 (2001) 223;

    Google Scholar 

  17. L. VIVIEN, P. LANCON, D. RIEHL, F. HACHE and E. ANGLARET, Carbon 40 (2002) 1789.

    Article  Google Scholar 

  18. X. SUN, R. Q. YU, G. Q. XU, T. S. A. HOR and W. JI, Appl. Phys. Lett. 73 (1998) 3632.

    Article  Google Scholar 

  19. R. SAITO, G. DRESSELHAUS and M. S. DRESSELHAUS, Phys. Rev. B 61 (2000) 2981.

    Article  Google Scholar 

  20. R. SAITO and H. KATAURA, in “Carbon Nanotubes: Synthesis, Structure, Properties and Applications” (Springer Series, 2001), Vol. 80, p. 213.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pratap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratap, A., Shah, A.L., Singh, A.R. et al. Linear and non-linear optical transmission from multi-walled carbon nanotubes. J Mater Sci 40, 4185–4188 (2005). https://doi.org/10.1007/s10853-005-3822-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-3822-6

Keywords

Navigation