Skip to main content
Log in

Dynamic properties characterization of metastable Al/Ti composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new idea of using stiffer metallic reinforcement, such as titanium, in a ductile metallic matrix, such as aluminium, to enhance the dynamic properties (viz., stiffness and damping) is successfully attempted. The study focuses on the relationship between the stiffness and the damping capability of the aluminium matrix with the weight percentage of titanium added to it. Results of this study show that addition of about 3.2, 6 and 7.5 wt% of titanium increases the overall damping capacity of the Al matrix by 6, 17 and 24%, respectively. Particular emphasis is placed to rationalize the increase in damping in terms of the increase in dislocation density and presence of plastic zone at the matrix-particulate interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Bhagat, “Damping of Multiphase Inorganic Materials” ASM International (Materials Park, Ohio, USA, 1993).

    Google Scholar 

  2. N. Srikanth, L. M. Tham and M. Gupta, Alumin. Trans. 1 (1999) 11.

    Google Scholar 

  3. N. Srikanth and M. Gupta, Key Engng. Mater. 227 (2002) 211.

    Google Scholar 

  4. N. Srikanth, V. V. Ganesh and M. Gupta, Mat. Sci. and Tech. 19 (2003) 1.

    Article  Google Scholar 

  5. A. Manna and B. Battacharayya, Mater. Proc. Techn. 140 (2003) 711.

    Article  Google Scholar 

  6. M. Gupta, J. Juarez-Islas, W. E. Frazier, F. A. Mohamed and E. J. Lavernia, Metall. Trans. B 23 (1992) 719.

    Google Scholar 

  7. A. Buch, “Pure Metals Properties—A Scientific Technical Handbook” (ASM International, Materials Park, Ohio, USA, 1999).

    Google Scholar 

  8. ASTM C1259-98: ‘Dynamic Young’s Modulus, Shear modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration,’ Annual Book of ASTM Standards, 1998 (American Society for Testing and Materials, Philadelphia, 1998) p. 1.

  9. D. J. Ewins, “Modal Testing: Theory and Practice” (Research Studies Press, New York, 1984).

    Google Scholar 

  10. B. J. Lazan, “Damping of Materials and Members in Structural Mechanics” (Pergamon Press, New York, 1968).

    Google Scholar 

  11. S. L. Chen Zhang, Y. A. Chang and U. R. Kattner, Intermetallics 5 (1997) 471.

    Article  Google Scholar 

  12. M. Gupta, F. Y. Chung and T. S. Srivatsan, Mater. Manufact. Proc. 18(6) (2003) 891.

    Article  Google Scholar 

  13. L. M. Peng, J. H. Wang, H. Li, J. H. Zhao and L. H. He, Scripta Materialia 52 (2004) 243.

    Article  Google Scholar 

  14. R. D. Batist, in “Materials Science and Technology—A Comprehensive Treatment,” Vol. 2b, Characterization of Materials part II, edited by. R. W. Cahn, P. Haasen and E. J. Kramer (VCH Publishers, New York, 1994) p. 161.

    Google Scholar 

  15. J. E. Bishop and V. K. Kinra. Metall. Mater. Trans. A 26A (1995) 2773.

    Google Scholar 

  16. R. B. Bhagat, M. F. Amateau and E. C. Smith, Intern. J. Powder Metall. 25 (1986) 311.

    Google Scholar 

  17. M. J. Donachie, “Titanium”A Technical Guide” (ASM International, Materials Park, Ohio, USA, 2000) p. 6.

    Google Scholar 

  18. S. K. Shee, S. K. Pradhan and M. De, Mater. Chem. Phy. 52 (1998) 228.

    Article  Google Scholar 

  19. D. Dunand and A. Mortensen, Mater. Sci. Engng. A135 (1991) 179.

    Google Scholar 

  20. E. Carreno-Morelli, S. E. Urreta and R. Schaller, Acta Mater. 48 (2000) 4725.

    Article  Google Scholar 

  21. V. C. Nardone and K. W. Prewo, Scr. Metall. 20 (1986) 43.

    Article  Google Scholar 

  22. T. Minoro and R. J. Arsenault, “Metal Matrix Composites—Thermomechanical Behavior” (Pergamon Publishers, New York, USA, 1989).

    Google Scholar 

  23. H. J. Frost and M. F. Ashby, “Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics” (Pergamon Press, Oxford, New York, 1982).

    Google Scholar 

  24. A. Granato and K. Lucke, J. Appl. Phy. 27 (1956) 583.

    Article  Google Scholar 

  25. T. S. KeÊ Phys. Rev. 71 (1947) 533.

    Article  Google Scholar 

  26. E. J. Lavernia, R. J. Perez and J. Zhang, Metall. Mater. Trans. A 26A (1995) 2803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Srikanth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srikanth, N., Hoong, L.K. & Gupta, M. Dynamic properties characterization of metastable Al/Ti composites. J Mater Sci 40, 4173–4179 (2005). https://doi.org/10.1007/s10853-005-3820-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-3820-8

Keywords

Navigation