Skip to main content
Log in

Dispersion and rheology of nickel nanoparticle inks

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nickel nanoparticles were dispersed in α-terpineol solvents, and their rheological behaviour and suspension structure were examined using various organic surfactants, surfactant concentrations (0–10 wt.% of the powder) and solids loadings (φ=0.01–0.28 in volumetric ratios) over a shear-rate range 100–103 s−1. A surfactant of oligomer polyester was found effective in the nanoparticle dispersion. An optimal surfactant concentration ca. 2–4 wt.% of the solids was found; beyond which, the apparent viscosity increased adversely. The oligomer-polyester molecules appeared to adsorb preferentially on the nanoparticle surface, forming a steric layer which facilitates the ink flow for the improved dispersion. A pseudoplastic flow behaviour was found as shear rate increased, and a maximum solids concentration (φm) was estimated as φm=0.32. The interparticle potential was dominated by van der Waals attraction in the terpineol liquid, and a reaction-limited cluster aggregation (RLCA) featuring with a fractal dimension (D f) of 2.0 was calculated. This finding together with the reduced φm reveals that the nanoparticle inks were flocculated in character even with the presence of polyester surfactant. Additionally, a porous (electrically conductive) particulate network was expected to form if the inks were printed on a non-conductive substrate followed then by drying and sintering in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. VOLLMANN, R. HAGENBACK and R. WASER, J. Am. Ceram. Soc. 80(9) (1997) 2301.

    Article  CAS  Google Scholar 

  2. S. SUMITA, M. IKEDA, Y. NAKANO, K. NISHIYAMA and T. NOMURA, ibid. 74(11) (1991) 2739.

    Article  CAS  Google Scholar 

  3. H. SHOJI, Y. NAKANO, H. MATSUSHITA, A. ONOE, H. KANAI and Y. YAMASHITA, J. Mater. Synth. Process 6(6) (1998) 415.

    Article  CAS  Google Scholar 

  4. D. J. MALANGA and B. T. BASSLER, Am. Ceram. Soc. Bulletin 79(9) (2000) 49.

    CAS  Google Scholar 

  5. P. DUTRONC, B. CARBONNE, F. MENIL and C. LUCAT, Sensors and Actuators B 6 (1992) 279.

    Article  CAS  Google Scholar 

  6. J. E. SMAY, J. CESARANO III and J. A. LEWIS, Langmuir 18 (2002) 5429.

    Article  CAS  Google Scholar 

  7. D. B. CHRISEY, Science 289 (2000) 879.

    Article  CAS  Google Scholar 

  8. J. J. LICARI, in Electronic Materials & Processes Handbook (McGraw-Hill, Inc., New York, 1993) p. 8.1.

    Google Scholar 

  9. E. ANTOLINI, M. FERRETTI and S. GEMME, J. Mater. Sci. 31 (1996) 2187.

    Article  CAS  Google Scholar 

  10. A. J. SÁNCHEZ-HERENCIA, A. J. MILLÁN, M. I. NIETO and R. MORENO, Acta Mater. 49 (2001) 645.

    Article  Google Scholar 

  11. A. V. NADKARNI, G. L. COWAN, A. V. CARRARD and R. KHATTAR, Int. J. Powder Metall. 37 (2001) 49.

    CAS  Google Scholar 

  12. W. J. TSENG and C.-N. CHEN, Mater. Sci. Eng. A 347(1–2) (2003) 145.

    Article  Google Scholar 

  13. W. J. TSENG and S.-Y. LIN, ibid. 362(1–2) (2003) 165.

    Google Scholar 

  14. W. J. TSENG and C.-N. CHEN, J. Mater. Sci. Lett. 21(5) (2002) 419.

    Article  CAS  Google Scholar 

  15. E. S. THIELE and N. SETTER, J. Am. Ceram. Soc. 83(6) (2000) 1407.

    Article  CAS  Google Scholar 

  16. C.-J. HSU and J.-H. JEAN, Mater. Chem. Phys. 78 (2002) 323.

    Article  Google Scholar 

  17. K. HOLMBERG, B. JÖNSSON, B. KRONBERG and B. LINDMAN, Surfactants and Polymers in Aqueous Solution (John Wiley & Sons, Ltd., Hoboken, New Jersey, U.S.A., 2003) p.

    Google Scholar 

  18. W. J. TSENG, C. K. HSU, C.-C. CHI and K.-H. TENG, Mater. Lett. 52(4–5) (2002) 313.

    Article  CAS  Google Scholar 

  19. R. J. PUGH and L. BERGSTRÖM, Surface and Colloid Chemistry in Advanced Ceramics Processing (Marcel Dekker, Inc., New York, U.S.A., 1994) p. 279.

    Google Scholar 

  20. K. HOLMBERG, B. JÖNSSON, B. KRONBERG and B. LINDMAN, Surfactants and Polymers in Aqueous Solution (John Wiley & Sons, Ltd., New Jersey, U.S.A., 2003) p. 357.

    Google Scholar 

  21. W.-H. SHIH, W. Y. SHIH, S.-I. KIM, J. LIU and I. A. AKSAY, Phys. Rev. A: Gen. Phys. 42 (1990) 4772.

    Article  CAS  Google Scholar 

  22. C. ALLAIN, M. CLOITRE and M. WAFRA, Phys. Rev. Lett. 74(8) (1995) 1478.

    Article  CAS  Google Scholar 

  23. J. C. SÁNCHEZ-LÓPEZ and A. FERNÁNDEZ, Acta Mater. 48 (2000) 3761.

    Article  Google Scholar 

  24. H. A. BARNES, J. Rheol. 33 (1989) 329.

    Article  CAS  Google Scholar 

  25. C.-N. CHEN and W. J. TSENG, J. Mater. Sci. 39 (2004) 3471.

    Article  CAS  Google Scholar 

  26. D.-M. LIU, ibid. 35 (2000) 5503.

    Article  CAS  Google Scholar 

  27. W. Y. SHIH, W.-H. SHIH and I. A. AKSAY, J. Am. Ceram. Soc. 82(3) (1999) 616.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjea J. Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, W.J., Chen, CN. Dispersion and rheology of nickel nanoparticle inks. J Mater Sci 41, 1213–1219 (2006). https://doi.org/10.1007/s10853-005-3659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-3659-z

Keywords

Navigation