Skip to main content
Log in

A study of copper stoichiometry and phase relationships in the copper-zirconium phosphate system: CuZr2(PO4)3 – Cu0.5Zr2(PO4)3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CuZr2(PO4)3 crystallises with the Nasicon-type structure and is a copper(I) ion conductor. The possibility of a solid solution between CuZr2(PO4)3 and Cu0.5Zr2(PO4)3 has been a controversial issue for many years. As part of a continued study, CuZr2(PO4)3 and Cu0.5Zr2(PO4)3 were prepared by solid state methods and used to investigate the copper stoichiometry and phase relationships between these two materials as a function of copper content, temperature and oxygen fugacity. The following reversible reaction: Cu0.5Zr2(PO4)3 (s) + \(\frac{1}{2}\)CuO (s) ↔ CuZr2(PO4)3 (s) + \(\frac{1}{4}\)O2(g) was studied by thermogravimetry in an atmosphere of PO2 = 0.22 atm and was found to occur at 475 ± 10°C. Thus, CuZr2(PO4)3 is a thermodynamically stable phase in air above ∼475°C, which places a lower temperature limit on its use as an electrolyte in air. The results of X-ray powder diffractometry on materials with various copper contents that had been annealed in argon at 750°C indicate that there is no evidence for a significant solid solution between CuZr2(PO4)3 and Cu0.5Zr2(PO4)3 nor, a reductive decomposition of Cu0.5Zr2(PO4)3. The coexistence of CuZr2(PO4)3 and Cu0.5Zr2(PO4)3 as discrete phases is also supported by evidence from electron spin resonance spectroscopy on these materials, which indicate the presence of copper(II) ions in CuZr2(PO4)3 at a dopant and dispersed level of concentration. The results from energy dispersive X-ray analysis, as well as, the novel use of the fluorescent behaviour of CuZr2(PO4)3 in ultra-violet light as an analytical tool, support the above conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y.-P. HONG, Mat. Res. Bull. 11 (1976) 173.

    Article  CAS  Google Scholar 

  2. P. C. YAO and D. J. FRAY, Solid State Ionics 8 (1983) 35.

    Article  CAS  Google Scholar 

  3. I. BUSSEREAU, M. S. BELKHIRIA, P. GRAVEREAU, A. BOIREAU, J. L. SOUBEYROUX, R. OLAZCUAGAL and G. LE FLEM, Acta Cryst. C48 (1992) 1741.

    CAS  Google Scholar 

  4. E. FARGIN, I. BUSSEREAU, G. LE FLEM, R. OLAZCUAGAL, C. CARTIER and H. DEXPERT, Eur. J. Solid State Inorg. Chem. 29 (1992) 975.

    CAS  Google Scholar 

  5. E. FARGIN, I. BUSSEREAN, R. OLAZCUAGAL and G. LE FLEM, J. Solid State Chem. 112 (1994) 176.

    Article  CAS  Google Scholar 

  6. B. MAIHOLD and H. WULFF, Wiss Z. Ernst-Moritz-Arndt-Uni. Greifswald, Math.-nat.wiss. Reihe 36 (1987) 27.

    CAS  Google Scholar 

  7. G. LE POLLES, C. PARENT, R. OLAZCUAGAL, G. LE FLEM and P. HAGENMULLER, C. R. Acad, Sci. Paris 306 Série II (1988) 765.

    Google Scholar 

  8. A. EL JAZOULI, M. ALAMI, R. BROCHU, J. M. DANCE, G. LE FLEM and P. HAGENMULLER, J. Solid State Chem. 71 (1987) 444.

    Article  Google Scholar 

  9. I. BUSSEREAU, R. OLAZCUAGAL, G. LE FLEM and P. HAGENMULLER, Eur. J. Solid State Inorg. Chem 26 (1989) 383.

    CAS  Google Scholar 

  10. E. CHRISTENSEN, J. H. VON BARNER, J. ENGELL and N. J. BJERRUM, J. Mater. Sci. 25 (1990) 4060.

    Article  CAS  Google Scholar 

  11. I. TAOUFIK, M. HADDAD, A. NADIRI, R. BROCHU and R. BERGER, J. Phys. Chem. Solids 60 (1999) 701.

    Article  CAS  Google Scholar 

  12. T. E. WARNER and J. MAIER, Mat. Sci. Eng. B 23 (1994) 88.

    Article  Google Scholar 

  13. R. J. SCHAFFER, PhD Thesis, The University of Leeds (1998).

  14. A. J. DAVIDSON and D. J. FRAY, Solid State Ionics 136–137 (2000) 613.

    Article  Google Scholar 

  15. T. E. WARNER, P. P. EDWARDS and D. J. FRAY, Mat. Sci. Eng. B 8 (1991) 219.

    Article  Google Scholar 

  16. R. J. SCHAFFER, R. V. KUMAR and A. E. INGHAM, Mat. Res. Bull. 34 (1999) 1153.

    Article  CAS  Google Scholar 

  17. T. E. WARNER, W. MILIUS and J. MAIER, Ber. Bunsenges. Phys. Chem. 96 (1992) 1607.

    Article  CAS  Google Scholar 

  18. R. AHMAMOUCH, S. ARSALANE, M. KACIMI and M. ZIYAD, Mat. Res. Bull. 32 (1997) 755.

    Article  CAS  Google Scholar 

  19. A. SERGHINI, R. BROCHU, R. OLAZCUAGAL and P. GRAVEREAU, Mat. Lett. 22 (1995) 149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, R.HW., Warner, T.E. A study of copper stoichiometry and phase relationships in the copper-zirconium phosphate system: CuZr2(PO4)3 – Cu0.5Zr2(PO4)3 . J Mater Sci 41, 1197–1205 (2006). https://doi.org/10.1007/s10853-005-3657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-3657-1

Keywords

Navigation