Skip to main content
Log in

The electric behavior of a lithium-niobate-phosphate glass and glass-ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A glass with a composition of 50Li2O-40P2O5-10Nb2O5 (% mol) was prepared by the melt-quenching method and heat-treated in air between 450 and 500°C. The samples were studied using X-ray powder diffraction (XRD), density measurements, Raman spectroscopy, scanning electron microscopy (SEM), dc electrical conductivity (σdc) and dielectric measurements.

The LiNbO3 crystalline phase was detected in the samples heat-treated at 480 and 500°C. The dc conductivity, at 300 K, decreases and the activation energy increases with the rise of the heat-treatment temperature. The dielectric data between 1 Hz and 100 kHz, at room temperature, were studied using the impedance formalism (Z*). These results show the existence of a relaxation mechanism, probably associated with a distribution of relaxation times. The mean value of the relaxation time, τσ, increases with the rise of the heat-treatment temperature. The fit of the dielectric data with a complex nonlinear least squares algorithm (CNLLS), reveals that a resistor (R), in parallel with a constant phase element (CPE, Z CPE = 1/[Y 0(jw) n]), is a good equivalent circuit. The R-value has a maximum for the sample heat-treated at 480°C, and the n parameter has the inverse behavior. The Y 0 parameter decreases with the increase of the heat-treatment temperature.

The dielectric constant value, at 1 kHz and room temperature, increases from 39.98 up to 97.80 with the rise of the heat-treatment temperature. These results suggest that exists a relation between the number of LiNbO3 ferroelectric crystals present in the glass-ceramics and the dielectric constant values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. KOMATSU, H. TAWARAYAMA, H. MOHRIN and K. MATUSITA, J. Non-Cryst. Solids 135 (1991) 105.

    Article  CAS  Google Scholar 

  2. S. HIRANO, T. YOGO, K. KIKUTA and Y. ISOBE, J. Mater. Sci. 28 (1993) 4188.

    Article  CAS  Google Scholar 

  3. M. M. ABOULLEIL and F. J. LEONBERGER, J. Am. Ceram. Society 72 (1989) 1311.

    Article  Google Scholar 

  4. E. M. VOGEL, ibid. 72 (1989) 719.

    Article  CAS  Google Scholar 

  5. E. B. DE ARAUJO, J. A. C. DE PAIVA, M. A. B. DE ARAUJO and A. SERGIO BEZERRA SOMBRA, Physica Scripta. 53 (1996) 104.

    Article  Google Scholar 

  6. H. G. KIM, T. KOMATSU, R. SATO and K. MATUSITA, J. Non-Cryst. Solids 162 (1994) 201.

    Article  Google Scholar 

  7. SR850, DSP Lock-In Amplifier Operating Manual and Programming Reference, Standford Research Systems, California, USA, 1992.

  8. S. W. MARTIN and C. A. ANGELL, J. Non-Cryst. Solids 83 (1986) 185.

    Article  CAS  Google Scholar 

  9. J. R. MACDONALD, Impedance spectroscopy, (John Wiley & Sons, New York, 1987).

    Google Scholar 

  10. A. K. JONSCHER, (Dielectric relaxation in solids), Chelsea Dielectrics Press, London, 1983.

    Google Scholar 

  11. B. V. R. CHOWDARI and K. RADHAKRISHNAN, J. Non-Cryst. Solids 110 (1989) 101.

    Article  CAS  Google Scholar 

  12. P. R. BEVINGTON, Data Reduction and Error Analysis for the Physical Sciences, (McGraw-Hill, EUA, 1969).

    Google Scholar 

  13. B. A. BOUKAMP, Solid State Ionics 11 (1984) 339; B.A. Boukamp, Solid State Ionics, 20 (1986) 31.

    Article  CAS  Google Scholar 

  14. M. P. F. GRAçA, M. A. VALENTE and M. G. F. SILVA, to be published.

  15. P. B. MACEDO, C. T. MOYNIHAN and R. BOSE, Phys. Chem. Glasses 13(6) (1972) 171.

    CAS  Google Scholar 

  16. J. C. C. ABRANTES, J.A LABRINCHA and J. R. FRADE, Mat. Res. Bull. 35 (2000) 727.

    Article  CAS  Google Scholar 

  17. KIA LA. NGAI and RONALD W. RENDELL in “Handbook of conducting polymers”, vol II, Marcel Dekker, NY, 1986.

    Google Scholar 

  18. JCPDS data base.

  19. V. C. FARMER, “The infrared spectra of minerals”, Mineralogical Society, London, 1974.

    Book  Google Scholar 

  20. J. S. ANDRADE, A. G. PINHEIRO, I. F. VASCONCELOS, J. M. SASAKI, J.A.C. PAIVA, M. A. VALENTE and A.S.B. SOMBRA, J. Phys. Cond. Matter 11 (1999) 4451.

    Article  Google Scholar 

  21. M. TATSUMISAGO, Y. KOWADA and T. MINAMI, Phys. Chem. of Glasses 29(2) (1988) 63.

    CAS  Google Scholar 

  22. K. FUKUMI and S. SAKKA, J. Mater. Sci. 23 (1988) 2819.

    Article  CAS  Google Scholar 

  23. (a) Merck Chemical database (https://doi.org/www.chemdat.de); (b) Alfa Aesar database (https://doi.org/www.alfa.com); (c) Aldrich database (https://doi.org/www.aldrich.com).

  24. F. L. GALEENER and J. C. MIKKELSEN, Jr., Solid State Communications 30 (1979) 505.

    Article  CAS  Google Scholar 

  25. K. J. RAO, K. C. SOBHA and S. KUMAR, Proc. Indian. Acad. Sci. (Chem. Sci.) 113 (5–6) (2001) 497.

    Article  CAS  Google Scholar 

  26. M. SCAGLIOTTI, M. VILLA and G. CHIODELLI, J. Non-Cryst. Solids 93 (1987) 350.

    Article  CAS  Google Scholar 

  27. N. SHIBATA, M. HORIGUDHI and T. EDAHINO, ibid. 45 (1981) 115.

    Article  CAS  Google Scholar 

  28. A. MOGUS-MILANKOVIC and D. E. DAY, ibid. 162 (1993) 275.

    Article  CAS  Google Scholar 

  29. J. J. HUDGENS, R. K. BROW, D. R. TALLART and S. W. MARTIN, ibid. 223 (1998) 21.

    Article  CAS  Google Scholar 

  30. M. P. F. GRAçA, M. A. VALENTE and M. G. F. SILVA, ibid. 325(1–3) (2003) 267.

    Article  Google Scholar 

  31. M. V. SHANKAR and K.B.R. VARMA, ibid. 243 (1999) 192.

    Article  CAS  Google Scholar 

  32. M. M. EL-DESOKY, S. M. SALEM and I. KASHIF, J. Mat. Sci 10 (1999) 279.

    CAS  Google Scholar 

  33. M. TODOROVIC and L. RADONJIC, Ceramics International 23 (1997) 55.

    Article  CAS  Google Scholar 

  34. U. HOPPE, G. WALTER, R. KRANOLD and D. STACHEL, J. Non-Cryst. Solids 263&264 (2000) 29.

    Article  CAS  Google Scholar 

  35. K. L. NGAI and S. W. MARTIN, Physical Review B 40(15) (1989) 10550.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graça, M.P.F., Valente, M.A. & Ferreira Da Silva, M.G. The electric behavior of a lithium-niobate-phosphate glass and glass-ceramics. J Mater Sci 41, 1137–1144 (2006). https://doi.org/10.1007/s10853-005-3652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-3652-6

Keywords

Navigation