Skip to main content
Log in

Metal injection molding of shape memory alloys using prealloyed NiTi powders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal injection molding (MIM) was applied for the production of shape memory parts using prealloyed NiTi powders with different Ni contents as starting materials. The MIM process allows the production of near-net-shape components without the occurrence of rapid tool wear as found in the case of conventional machining operations. With optimized manufacturing conditions, including feedstock preparation, injection parameters and sintering conditions, densities of more than 98% of the theoretical value could be achieved. Determination of the phase transformation behavior, as a basic requirement for the shape memory effect, was done by differential scanning calorimetry (DSC). In a first approach, tensile tests in the austenitic state showed pseudoelastic behavior. An elongation at failure of 3.8% was found. For martensite, up to 5% was obtained. Reasons for the lower strain compared to melted NiTi alloys are discussed. For martensitic samples the one-way shape memory effect (1WE) was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hornbogen, Metall 41 (1987) 488.

    Google Scholar 

  2. H. Funakubo, in “Shape memory alloys”, (Gordon and Breach Science Publishers, New York, 1987) p. 200.

    Google Scholar 

  3. J. van Humbeeck, R. Stalmans and P. A. Besselink in “Metals as Biomaterials”, edited by J. A. Helsen, H. J. Breme, (John Wiley & Sons, Chichester, 1998) p. 73.

    Google Scholar 

  4. L. Bataillad, J. -E. Didaux and R. Gotthardt, Phil. Mag. A 78 (1998) 327.

    Article  Google Scholar 

  5. J. Khalil-Allafi, X. Ren and G. Eggeler, Acta Mater. 50 (2002) 793.

    Article  Google Scholar 

  6. W. Tang, B. Sundman, R. Sandström and C. Qui, ibid. 47 (1999) 3457.

    Article  Google Scholar 

  7. A. Ishida, M. Sato, A. Takei, K. Nomura and S. Miyazaki, Metall. Mater. Trans. 27A (1996) 3753.

    Google Scholar 

  8. K. Gall, K. Juntunen, H. J. Maier, H. Sehitoglu and Y. I. Chumlyakof, Acta Mater. 49 (2001) 3205.

    Article  Google Scholar 

  9. Y. Shugo, S. Hanada and T. Honma, Bull. Res. Inst. Min. Dress. Metall. Tohuku Univ. 41 (1985) 35.

    Google Scholar 

  10. T. Honma, in “Shape memory alloys”, edited by H. Funakubo, (Gordon and Breach Science Publishers, New York, 1987) p. 61.

    Google Scholar 

  11. P. Olier, F. Barcelo, J. L. Bechade, J. C. Brachet, E. Lefevre and G. Guenin, J. Phys. IV France 7 (1997) C5-143.

    Google Scholar 

  12. S. K. Wu, H. C. Lin and C. C. Chen, Mat. Letters 40 (1999) 27.

    Article  Google Scholar 

  13. H. Kato, T. Koyari, M. Tokizane and S. Miura, Acta metall. Mater. 42 (1994) 1351.

    Article  Google Scholar 

  14. M. D. McNeese, D. C. Lagoudas and T. C. Pollock, Mater. Sci. Eng. A280 (2002) 334.

    Google Scholar 

  15. M. Bram, A. Ahmand-Khanlou, A. Heckmann, B. Fuchs, H. P. Buchkremer and D. Stöver, Mater. Sci. Eng. A337 (2002) 254.

    Google Scholar 

  16. R. M. German, Powder Injection Molding, Metal Powder Industries Federation, Princeton, (1990).

    Google Scholar 

  17. J. W. Newkirk, J. A. Sago and G. M. Brasel, in Processing and Fabrication of Advanced Materials VII, edited by T. S. Srivatsan and K. A. Khor, The Minerals, Metals and Materials Society, Warrendale, (1998) 213.

    Google Scholar 

  18. H. Kyogoku and S. Komatsu, J. Jap. Soc. Powder and Powder Metallurgy 46 (1999) 1103.

    Google Scholar 

  19. B. Y. Li, L. J. Rong., Y. Y. Li and V. E. Gjunter, Acta Mater. 48 (2000) 3895.

    Article  Google Scholar 

  20. S. M. Green, D. M. Grant and N. R. Kelly, Powder Metall. 40 (1997) 43.

    Google Scholar 

  21. C. M. Chang, S. Trigwell and T. Duerig, Surf. Interf. Anal. 15 (1990) 349.

    Article  Google Scholar 

  22. C. L. Chu, S. K. Wu and Y. C. Yen, Mater. Sci. Eng. A 216 (1996) 193.

    Article  Google Scholar 

  23. W. Xiaoxiang, Trans. Nonferrous Met. Soc. China 8 (1998) 455.

    Google Scholar 

  24. D. Treppmann, Thermomechanische Behandlung von NiTi, Fortschrittsberichte VDI, VDI Verlag Dortmund (1997).

  25. X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Y. I. Chumlyakov and M. Asai, Mater. Sci. Eng. A 312 (2001) 196.

    Article  Google Scholar 

  26. J. Khalil-Allafi, A. Dlouhy and G. Eggeler, Acta Mater. 50 (2002) 4255.

    Article  Google Scholar 

  27. E. Schüller, M. Bram, O. A. Hamed, D. Sebold, H. P. Buchkremer and D. Stöver, to be published, Adv. Eng. Mat.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Krone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöller, E., Krone, L., Bram, M. et al. Metal injection molding of shape memory alloys using prealloyed NiTi powders. J Mater Sci 40, 4231–4238 (2005). https://doi.org/10.1007/s10853-005-2819-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2819-5

Keywords

Navigation