Skip to main content
Log in

Atomic mechanisms of grain boundary diffusion: Low versus high temperatures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We analyze recent results of atomistic computer simulations of grain boundary (GB) diffusion in metals. At temperatures well below the bulk melting point T m GB diffusion occurs by random walk of individual vacancies and self-interstitials. Both defects are equal participants in the diffusion process and can move by a large variety of diffusion mechanisms, many of which are collective transitions. GB diffusion coefficients can be computed by kinetic Monte Carlo simulations. At high temperatures, the presence of large concentrations of point defects is likely to alter the diffusion mechanisms. Molecular dynamics simulations of GB structure and diffusion in copper reveal a continuous GB premelting in close vicinity of T m . However, diffusion in high-energy GBs becomes almost independent of the GB structure (“universal”) at temperatures well below T m . This behavior can be tentatively explained in terms of heterophase fluctuations from the solid to the liquid phase. The exact diffusion mechanisms in the presence of heterophase fluctuations are yet to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. I. KAUR, Y. MISHIN and W. GUST, in Fundamentals of Grain and Interphase Boundary Diffusion, (Wiley, Chichester, West Sussex, 1995).

    Google Scholar 

  2. R. W. BALLUFFI, in Diffusion in Crystalline Solids, ” edited by G. E. Murch and A. S. Nowick (Academic Press, New York, 1984) p. 319.

    Google Scholar 

  3. Q. MA, C. L. LIU, J. B. ADAMS and R. W. BALLUFFI, Acta metall. mater 41 (1993) 143.

    Article  Google Scholar 

  4. C. L. LIU and S. J. PLIMPTON, Phys. Rev. B 51 (1995) 4523.

    Article  Google Scholar 

  5. M. NOMURA, S.-Y. LEE and J. B. ADAMS, J. Mater. Res 6 (1991) 1.

    Google Scholar 

  6. M. NOMURA and J. B. ADAMS, J. Mater. Res 7 (1992) 3202.

    Google Scholar 

  7. Idem, ibid 10 (1995) 2916.

    Google Scholar 

  8. M. R. SØRENSEN, Y. MISHIN and A. F. VOTER, Phys. Rev. B 62 (2000) 3658.

    Article  Google Scholar 

  9. A. SUZUKI and Y. MISHIN, Interf. Sci 11 (2003) 131.

    Article  Google Scholar 

  10. Idem., ibid 11 (2003) 425.

    Article  Google Scholar 

  11. A. SUZUKI and Y. MISHIN, J. Metast. Nonocryst. Mater 19 (2004) 1.

    Google Scholar 

  12. M. S. DAW and M. I. BASKES, Phys. Rev. B 29 (1984) 6443.

    Google Scholar 

  13. Y. MISHIN, D. FARKAS, M. J. MEHL and D. A. PAPACONSTANTOPOULOS, ibid 59 (1999) 3393.

    Article  Google Scholar 

  14. Y. MISHIN, M. J. MEHL, D. A. PAPACONSTANTOPOULOS, A. F. VOTER and J. D. KRESS, Phys. Rev. B 63 (2001) 224106.

    Article  Google Scholar 

  15. Idem., ibid 65 (2002) 224114.

    Article  Google Scholar 

  16. Y. MISHIN, Acta Mater 52 (2004) 1451.

    Article  Google Scholar 

  17. G. H. VINEYARD, Phys. Chem. Solid 3 (1957) 121.

    Article  Google Scholar 

  18. H. JÓNSSON, G. MILLS and K. W. JACOBSEN, in: “Classical and Quantum Dynamics in Condensed Phase Simulations, ” edited by B. J. Berne, G. Ciccotti and D. F. Coker, (World Scientific, Singapore, 1998).

    Google Scholar 

  19. G. HENKELMAN, G. JOHANNESSON and H. JÓNSSON, in “Theoretical Methods in Condensed Phase Chemistry, ” edited by S. D. Schwartz of Progress in Theoretical Chemistry and Physics, Chapt. 10 (Kluwer Academic Publishers, 2000) Vol. 5.

  20. A. HEESEMANN, V. ZOLLMER, K. RATZKE and F. FAUPEL, Phys. Rev. Lett 84 (2000) 1467.

    Article  PubMed  Google Scholar 

  21. P. KEBLINSKI, D. WOLF, S. R. PHILLPOT and H. GLEITER, Philos. Mag. A 79 (1999) 2735.

    Article  Google Scholar 

  22. T. NGUYEN, P. S. HO, T. KWOK, C. NITTA and S. YIP, Phys. Rev. B 46 (1992) 6050.

    Article  Google Scholar 

  23. J. W. CAHN and J. E. TAYLOR, Acta Mater 52 (2004) 4887.

    Article  Google Scholar 

  24. A. SUZUKI and Y. MISHIN, to be published.

  25. T. SURHOLT and CHR. HERZIG, Acta Mater 45 (1997) 3817.

    Article  Google Scholar 

  26. J. HENDERSON and L. YANG, Trans. AIME 221 (1961) 72.

    Google Scholar 

  27. V. T. BORISOV, V. M. GOLIKOV and G. V. SCHERBEDINSKY, Phys. Met. Metallogr 17 (1964) 80.

    Google Scholar 

  28. D. GUPTA, Metall. Trans. A 8 (1977) 1431.

    Google Scholar 

  29. Idem., Interf. Sci 11 (2003) 7.

    Article  Google Scholar 

  30. G. CICCOTTI, M. GUILLOPE and V. PONTIKIS, Phys. Rev. B 27 (1983) 5576.

    Google Scholar 

  31. M. GUILLOPE, G. CICCOTTI and V. PONTIKIS, Surf. Sci 144 (1984) 67.

    Article  Google Scholar 

  32. J. Q. BROUGHTON and G. H. GILMER, Phys. Rev. Lett 56 (1986) 2692.

    Article  PubMed  Google Scholar 

  33. J. LU and J. A. SZPUNAR, Interf. Sci 3 (1995) 143.

    Google Scholar 

  34. J. Q. BROUGHTON and G. H. GILMER, Modell. Simul. Mater. Sci. Eng 6 (1998) 87.

    Article  Google Scholar 

  35. J. F. LUTSCO, D. WOLF, S. YIP, S. R. PHILLPOT and T. NGUYEN, Phys. Rev. B 38 (1988) 11572.

    Article  Google Scholar 

  36. J. FRENKEL, in “Kinetic Theory of Liquids, ” (Dover, New York, 1955).

    Google Scholar 

  37. N. F. MOTT, Proc. Phys. Soc 60 (1948) 391.

    Article  Google Scholar 

  38. A. R. UBBELOHDE, “Molten State of Matter: Melting and Crystal Structure, ” (Wiley, Chichester, 1978).

    Google Scholar 

  39. Y. M. MISHIN and I. M. RAZUMOVSKII, Phys. Status Solidi (a) 117 (1990) 91.

    Google Scholar 

  40. Y. M. MISHIN and I. M. RAZUMOVSKII, Acta Metall. Mater 40 (1992) 2707.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, A., Mishin, Y. Atomic mechanisms of grain boundary diffusion: Low versus high temperatures. J Mater Sci 40, 3155–3161 (2005). https://doi.org/10.1007/s10853-005-2678-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2678-0

Keywords

Navigation