Abstract
We analyze recent results of atomistic computer simulations of grain boundary (GB) diffusion in metals. At temperatures well below the bulk melting point T m GB diffusion occurs by random walk of individual vacancies and self-interstitials. Both defects are equal participants in the diffusion process and can move by a large variety of diffusion mechanisms, many of which are collective transitions. GB diffusion coefficients can be computed by kinetic Monte Carlo simulations. At high temperatures, the presence of large concentrations of point defects is likely to alter the diffusion mechanisms. Molecular dynamics simulations of GB structure and diffusion in copper reveal a continuous GB premelting in close vicinity of T m . However, diffusion in high-energy GBs becomes almost independent of the GB structure (“universal”) at temperatures well below T m . This behavior can be tentatively explained in terms of heterophase fluctuations from the solid to the liquid phase. The exact diffusion mechanisms in the presence of heterophase fluctuations are yet to be established.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
I. KAUR, Y. MISHIN and W. GUST, in Fundamentals of Grain and Interphase Boundary Diffusion, (Wiley, Chichester, West Sussex, 1995).
R. W. BALLUFFI, in Diffusion in Crystalline Solids, ” edited by G. E. Murch and A. S. Nowick (Academic Press, New York, 1984) p. 319.
Q. MA, C. L. LIU, J. B. ADAMS and R. W. BALLUFFI, Acta metall. mater 41 (1993) 143.
C. L. LIU and S. J. PLIMPTON, Phys. Rev. B 51 (1995) 4523.
M. NOMURA, S.-Y. LEE and J. B. ADAMS, J. Mater. Res 6 (1991) 1.
M. NOMURA and J. B. ADAMS, J. Mater. Res 7 (1992) 3202.
Idem, ibid 10 (1995) 2916.
M. R. SØRENSEN, Y. MISHIN and A. F. VOTER, Phys. Rev. B 62 (2000) 3658.
A. SUZUKI and Y. MISHIN, Interf. Sci 11 (2003) 131.
Idem., ibid 11 (2003) 425.
A. SUZUKI and Y. MISHIN, J. Metast. Nonocryst. Mater 19 (2004) 1.
M. S. DAW and M. I. BASKES, Phys. Rev. B 29 (1984) 6443.
Y. MISHIN, D. FARKAS, M. J. MEHL and D. A. PAPACONSTANTOPOULOS, ibid 59 (1999) 3393.
Y. MISHIN, M. J. MEHL, D. A. PAPACONSTANTOPOULOS, A. F. VOTER and J. D. KRESS, Phys. Rev. B 63 (2001) 224106.
Idem., ibid 65 (2002) 224114.
Y. MISHIN, Acta Mater 52 (2004) 1451.
G. H. VINEYARD, Phys. Chem. Solid 3 (1957) 121.
H. JÓNSSON, G. MILLS and K. W. JACOBSEN, in: “Classical and Quantum Dynamics in Condensed Phase Simulations, ” edited by B. J. Berne, G. Ciccotti and D. F. Coker, (World Scientific, Singapore, 1998).
G. HENKELMAN, G. JOHANNESSON and H. JÓNSSON, in “Theoretical Methods in Condensed Phase Chemistry, ” edited by S. D. Schwartz of Progress in Theoretical Chemistry and Physics, Chapt. 10 (Kluwer Academic Publishers, 2000) Vol. 5.
A. HEESEMANN, V. ZOLLMER, K. RATZKE and F. FAUPEL, Phys. Rev. Lett 84 (2000) 1467.
P. KEBLINSKI, D. WOLF, S. R. PHILLPOT and H. GLEITER, Philos. Mag. A 79 (1999) 2735.
T. NGUYEN, P. S. HO, T. KWOK, C. NITTA and S. YIP, Phys. Rev. B 46 (1992) 6050.
J. W. CAHN and J. E. TAYLOR, Acta Mater 52 (2004) 4887.
A. SUZUKI and Y. MISHIN, to be published.
T. SURHOLT and CHR. HERZIG, Acta Mater 45 (1997) 3817.
J. HENDERSON and L. YANG, Trans. AIME 221 (1961) 72.
V. T. BORISOV, V. M. GOLIKOV and G. V. SCHERBEDINSKY, Phys. Met. Metallogr 17 (1964) 80.
D. GUPTA, Metall. Trans. A 8 (1977) 1431.
Idem., Interf. Sci 11 (2003) 7.
G. CICCOTTI, M. GUILLOPE and V. PONTIKIS, Phys. Rev. B 27 (1983) 5576.
M. GUILLOPE, G. CICCOTTI and V. PONTIKIS, Surf. Sci 144 (1984) 67.
J. Q. BROUGHTON and G. H. GILMER, Phys. Rev. Lett 56 (1986) 2692.
J. LU and J. A. SZPUNAR, Interf. Sci 3 (1995) 143.
J. Q. BROUGHTON and G. H. GILMER, Modell. Simul. Mater. Sci. Eng 6 (1998) 87.
J. F. LUTSCO, D. WOLF, S. YIP, S. R. PHILLPOT and T. NGUYEN, Phys. Rev. B 38 (1988) 11572.
J. FRENKEL, in “Kinetic Theory of Liquids, ” (Dover, New York, 1955).
N. F. MOTT, Proc. Phys. Soc 60 (1948) 391.
A. R. UBBELOHDE, “Molten State of Matter: Melting and Crystal Structure, ” (Wiley, Chichester, 1978).
Y. M. MISHIN and I. M. RAZUMOVSKII, Phys. Status Solidi (a) 117 (1990) 91.
Y. M. MISHIN and I. M. RAZUMOVSKII, Acta Metall. Mater 40 (1992) 2707.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Suzuki, A., Mishin, Y. Atomic mechanisms of grain boundary diffusion: Low versus high temperatures. J Mater Sci 40, 3155–3161 (2005). https://doi.org/10.1007/s10853-005-2678-0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10853-005-2678-0