Journal of Materials Science

, Volume 40, Issue 12, pp 3067–3074 | Cite as

Effect of boundary plane on the atomic structure of [0001] Σ 7 tilt grain boundaries in ZnO

  • F. Oba
  • Y. Sato
  • T. Yamamoto
  • H. Ohta
  • H. Hosono
  • Y. Ikuhara


The atomic structure of [0001] Σ 7 tilt grain boundaries with {\(12\bar{3}0\)}‖ {\(12\bar{3}0\)}, {\(14\bar{5}0\)}‖ {\(14\bar{5}0\)}, and {\(10\bar{1}0\)}‖ {\(35\bar{8}0\)} boundary planes in ZnO was investigated through high-resolution transmission electron microscopy observation of fiber-textured thin films and atomistic calculations. These boundaries were found to comprise three kinds of common structural units that are characterized by fourfold- to eightfold-coordinated channels along the [0001] direction in contrast to sixfold-coordinated channels in wurtzite structure. The boundary structural units are very similar to the multiple core structures of edge dislocations with Burgers vectors of 1/3 < \(11\bar{2}0\)> . Transformation between two of the three configurations can easily occur through an atom flipping corresponding to dislocation glide. Depending on the orientation of boundary planes with respect to the Burgers vectors, the dislocation-like units exhibit straight or zigzag arrangements with periodicities corresponding to the Σ 7 misorientation.


Polymer Microscopy Electron Microscopy Thin Film Transmission Electron Microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. L. KRIVANEK, S. ISODA and K. KOBAYASHI, Philos. Mag. 36 (1977) 931.Google Scholar
  2. 2.
    K. L. MERKLE and D. J. SMITH, Phys. Rev. Lett. 59 (1987) 2887.CrossRefPubMedGoogle Scholar
  3. 3.
    F. ERNST, M. W. FINNIS, D. HOFMANN, T. MUSCHIK, U. SCHÖNBERGER, U. WOLF and M. METHFESSEL, ibid. 69 (1992) 620.CrossRefPubMedGoogle Scholar
  4. 4.
    M. M. MCGIBBON, N. D. BROWNING. M. F. CHISHOLM, A. J. MCGIBBON, S. J. PENNYCOOK, V. RAVIKUMAR and V. P. DRAVID, Science 266 (1994) 102.Google Scholar
  5. 5.
    N. D. BROWNING, J. P. BUBAN, H. O. MOLTAJI, S. J. PENNYCOOK, G. DUSCHER, K. D. JOHNSON, R. P. RODRIGUES and V. P. DRAVID, Appl. Phys. Lett. 74 (1999) 2638.CrossRefGoogle Scholar
  6. 6.
    D. M. DUFFY and P. W. TASKER, Phil. Mag. A 47 (1983) 817.Google Scholar
  7. 7.
    D. WOLF, J. Am. Ceram. Soc. 67 (1984) 1.Google Scholar
  8. 8.
    M. KOHYAMA, Modelling Simul. Mater. Sci. Eng. 10 (2002) R31.CrossRefGoogle Scholar
  9. 9.
    I. DAWSON, P. D. BRISTOWE, M. H. LEE, M. C. PAYNE, M. D. SEGALL and J. A. WHITE, Phys. Rev. B 54 (1996) 13727.CrossRefGoogle Scholar
  10. 10.
    S. D. MO, W. Y. CHING, M. F. CHISHOLM and G. DUSCHER, ibid. 60 2416 (1999).CrossRefGoogle Scholar
  11. 11.
    S. FABRIS and C. ELSÄSSER, ibid. 64 (2001) 245117.Google Scholar
  12. 12.
    F. OBA, I. TANAKA, S. R. NISHITANI, H. ADACHI, B. SLATER and D. H. GAY, Phil. Mag. A 80 (2000) 1567.Google Scholar
  13. 13.
    F. OBA, S. R. NISHITANI, H. ADACHI, I. TANAKA, M. KOHYAMA and S. TANAKA, Phys. Rev. B 63 (2001) 045410.CrossRefGoogle Scholar
  14. 14.
    J. M. CARLSSON, B. HELLSING, H. S. DOMINGOS and P. D. BRISTOWE, J. Phys.: Condens. Matter 13 (2001) 9937.CrossRefGoogle Scholar
  15. 15.
    T. HÖCHE, P. R. KENWAY, H.-J. KLEEBE, M. RÜHLE and P. A. MORRIS, J. Amer. Ceram. Soc. 77 (1994) 339.CrossRefGoogle Scholar
  16. 16.
    U. DAHMEN, S. PACIORNIK, I. G. SOLORZANO and J. B. VANDERSANDE, Inter. Sci. 2 (1994) 125.Google Scholar
  17. 17.
    N. KISELEV, F. SARRAZIT, E. A. STEPANTSOV, E. OLSSON, T. CLAESON, V. I. BONDARENKO, R. C. POND and N. A. KISELEV, Phil. Mag. A 76 (1997) 633.Google Scholar
  18. 18.
    Y. IKUHARA, T. WATANABE, T. SAITO, H. YOSHIDA and T. SAKUMA, Mater. Sci. Forum 284-286 (1999) 273.Google Scholar
  19. 19.
    T. YAMAMOTO, K. HAYASHI, Y. IKUHARA and T. SAKUMA, J. Amer. Ceram. Soc. 83 (2000) 1527.Google Scholar
  20. 20.
    E. C. DICKEY, X. D. FAN and S. J. PENNYCOOK, ibid. 84 (2001) 1361.Google Scholar
  21. 21.
    S. NUFER, A. G. MARINOPOULOS, T. GEMMING, C. ELSÄSSER, W. KURTZ, S. KÖSTLMEIER and M. RÜHLE, Phys. Rev. Lett. 86 (2001) 5066.CrossRefPubMedGoogle Scholar
  22. 22.
    N. SHIBATA, F. OBA, T. YAMAMOTO, Y. IKUHARA and T. SAKUMA, Philos. Mag. Lett. 82 (2002) 393.CrossRefGoogle Scholar
  23. 23.
    Z. ZHANG, W. SIGLE and M. RÜHLE, Phys. Rev. B 66 (2002) 094108.CrossRefGoogle Scholar
  24. 24.
    H. NISHIMURA, K. MATSUNAGA, T. SAITO T, T. YAMAMOTO and Y. IKUHARA, J. Amer. Ceram. Soc. 86 (2003) 574.Google Scholar
  25. 25.
    N. SHIBATA, F. OBA, T. YAMAMOTO and Y. IKUHARA, Philos. Mag. 84 (2004) 2381.CrossRefGoogle Scholar
  26. 26.
    Y. SATO, F. OBA, T. YAMAMOTO, Y. IKUHARA and T. SAKUMA, J. Amer. Ceram. Soc. 85 (2002) 2142.Google Scholar
  27. 27.
    F. OBA, Y. SATO, T. YAMAMOTO, Y. IKUHARA and T. SAKUMA, ibid. 86 (2003) 1616.Google Scholar
  28. 28.
    Y. SATO, F. OBA, M. YODOGAWA, T. YAMAMOTO and Y. IKUHARA, J. Appl. Phys. 95 (2004) 1258.Google Scholar
  29. 29.
    K. L. MERKLE, G.-R. BAI, Z. LI, C.-Y. SONG and L. J. THOMPSON, Phys. Stat. Sol. (a) 166 73 (1998).CrossRefGoogle Scholar
  30. 30.
    V. POTIN, P. RUTERANA, G. NOUET, R. C. POND and H. MORKOÇ, Phys. Rev. B 61 (2000) 5587.CrossRefGoogle Scholar
  31. 31.
    F. OBA, H. OHTA, Y. SATO, H. HOSONO, T. YAMAMOTO and Y. IKUHARA, ibid. 70 (2004) 125415.CrossRefGoogle Scholar
  32. 32.
    D. R. CLARKE, J. Amer. Ceram. Soc. 82 (1999) 485.Google Scholar
  33. 33.
    M. MATSUOKA, Jpn. J. Appl. Phys. 10 (1971) 736.Google Scholar
  34. 34.
    K. MUKAE, K. TSUDA and I. NAGASAWA, ibid. 16 (1977) 1361.Google Scholar
  35. 35.
    G. E. PIKE and C. H. SEAGER, J. Appl. Phys. 50 (1979) 3414.CrossRefGoogle Scholar
  36. 36.
    D. G. BRANDON, B. RALPH, S. RANGANATHAN and M. S. WALD, Acta. Metall. 12 (1964) 813.CrossRefGoogle Scholar
  37. 37.
    J. D. GALE, J. Chem. Soc. Faraday Trans. 93 (1997) 629.CrossRefGoogle Scholar
  38. 38.
    G. V. LEWIS and C. R. A. CATLOW, J. Phys. C: Solid State Phys. 18 (1985) 1149.CrossRefGoogle Scholar
  39. 39.
    J. M. COWLEY and A. F. MOODIE, Acta Cryst. 10 (1957) 609.CrossRefGoogle Scholar
  40. 40.
    S. C. ABRAHAMS and J. L. BERNSTEIN, Acta. Crystallogr. Sect. B 25 (1969) 1233.CrossRefGoogle Scholar
  41. 41.
    J. ELSNER, R. JONES, P. K. SITCH, V. D. POREZAG, M. ELSTNER, TH. FRAUENHEIM, M. I. HEGGIE, S. ÖBERG and P. R. BRIDDON, Phys. Rev. Lett. 79 (1997) 3672.CrossRefGoogle Scholar
  42. 42.
    J. CHEN, P. RUTERANA and G. NOUET, Mater. Sci. Eng. B82 (2001) 117.CrossRefGoogle Scholar
  43. 43.
    A. BÉRÉ and A. SERRA, Phys. Rev. B 66 (2002) 085330.CrossRefGoogle Scholar
  44. 44.
    Idem, ibid. 65 (2002) 205323.CrossRefGoogle Scholar
  45. 45.
    J. CHEN, P. RUTERANA and G. NOUET, Phys. Rev. B 67 (2003) 205210.CrossRefGoogle Scholar
  46. 46.
    Y. XIN, S. J. PENNYCOOK, N. D. BROWNING, P. D. NELLIST, S. SIVANANTHAN, F. OMNÉS, B. BEAUMONT, J. P. FAURIE and P. GIBART, Appl. Phys. Lett. 72 (1998) 2680.CrossRefGoogle Scholar
  47. 47.
    W. BOLLMANN, “Crystal Defects and Crystalline Interfaces” (Springer-Verlag, Berlin, 1970).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • F. Oba
    • 1
  • Y. Sato
    • 2
  • T. Yamamoto
    • 2
  • H. Ohta
    • 3
  • H. Hosono
    • 3
  • Y. Ikuhara
    • 4
  1. 1.Department of Materials Science and EngineeringKyoto UniversityKyotoJapan
  2. 2.Department of Advanced Materials ScienceThe University of TokyoChibaJapan
  3. 3.SORST, Japan Science and Technology Agency, Frontier Collaborative Research CenterTokyo Institute of TechnologyYokohamaJapan
  4. 4.Institute of Engineering InnovationThe University of TokyoTokyoJapan

Personalised recommendations