Skip to main content
Log in

O2 oxidation reaction at the Si(100)-SiO2 interface: A first-principles investigation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We investigated the oxidation reaction of the O2 molecule at the Si(100)-SiO2 interface by using a constrained ab initio molecular dynamics approach. To represent the Si(100)-SiO2 interface, we adopted several model interfaces whose structural properties are consistent with atomic-scale information obtained from a variety of experimental probes. We addressed the oxidation reaction by sampling different reaction pathways of the O2 molecule at the interface. The reaction proceeds sequentially through the incorporation of the O2 molecule in a Si–Si bond and the dissociation of the resulting network O2-species. The oxidation reaction occurs nearly spontaneously and is exothermic, regardless of the spin state of the O2 molecule. Our study suggests a picture of the silicon oxidation process entirely based on diffusive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. WANG, P. ROMAN, E. KAMIENIECKI and J. RUZYLLO, Electrochem. Solid-State Lett 6 (2003) G63.

    Article  Google Scholar 

  2. Y. J. CHABAL (ed.) “Fundamental Aspects of Silicon Oxidation” (Springer, Berlin, 2001).

    Google Scholar 

  3. E. P. GUSEV, H. C. LU, T. GUSTAFSSON and E. GARFUNKEL, Phys. Rev. B 52 (1995) 1759.

    Article  Google Scholar 

  4. B. E. DEAL and A. S. GROVE, J. Appl. Phys 36 (1965) 3770.

    Article  Google Scholar 

  5. E. ROSENCHER, A. STRABONI, S. RIGO and G. AMSEL, Appl. Phys. Lett 34 (1979) 254.

    Article  Google Scholar 

  6. A. BONGIORNO and A. PASQUARELLO, Phys. Rev. Lett 88 (2002) 125901.

    Article  PubMed  Google Scholar 

  7. N. F. MOTT, S. RIGO, F. ROCHET and A. M. STONEHAM, Philos. Mag. B 60 (1989) 189.

    Google Scholar 

  8. L. VERDI and A. MIOTELLO, Phys. Rev. B 51 (1995) 5469; S. DIMITRIJEV and H. B. HARRISON, J. Appl. Phys 80 (1996) 2467; A. STOCKHAUSEN, T. U. KAMPEN and W. MÖNCH, Appl. Surf. Sci 56 (1992) 795; J. WESTERMANN, H. NIENHAUS and W. MÖNCH, Surf. Sci 311 (1994) 101; K.-Y. PENG, L.-C. WANG and J. C. SLATTERY, J. Vac. Sci. Technol B 14 (1996) 3316; D. R. WOLTERS and A. T. A. ZENGERS VAN DUIJNHOVEN, Microelect. Reliab 38 (1998) 259; R. M. C. DE ALMEIDA, S. GONÇALVES, I. J. R. BAUMVOL and F. C. STEDILE, Phys. Rev. B 61 (2000) 12992.

  9. R. H. DOREMUS and A. SZEWCZYK, J. Mater. Sci 22 (1987) 2887; R. H. DOREMUS, J. Appl. Phys 66 4441 (1989).

    Google Scholar 

  10. A. PASQUARELLO, M. S. HYBERTSEN and R. CAR, Nature 396 (1998) 58; in Ref. [2]p. 107.

  11. W. ORELLANA, A. J. R. DA SILVA and A. FAZZIO, Phys. Rev. Lett 90 (2003) 16103.

    Article  Google Scholar 

  12. B. B. STEFANOV and K. RAGHAVACHARI, Surf. Sci 389 (1997) L1159; K. KATO, T. UDA and K. TERAKURA, Phys. Rev. Lett 80 (1998) 2000; Y. TU and J. TERSOFF, ibid 89 (2002) 086102; T. AKIYAMA and H. KAGESHIMA, Appl. Surf. Sci 216 (2003) 270; T. YAMASAKI, K. KATO and T. UDA, Phys. Rev. Lett 91 (2003) 146102.

  13. A. PASQUARELLO, K. LAASONEN, R. CAR, C. LEE and D. VANDERBILT, ibid 69 (1992) 1982; K. LAASONEN, A. PASQUARELLO, R. CAR, C. LEE and D. VANDERBILT, Phys. Rev. B 47 (1993) 10142.

  14. A. BONGIORNO and A. PASQUARELLO, Appl. Phys. Lett 83 (2003) 1417.

    Article  Google Scholar 

  15. A. BONGIORNO, A. PASQUARELLO, M. S. HYBERTSEN and L. C. FELDMAN, Phys. Rev. Lett 90 (2003) 186101.

    Article  PubMed  Google Scholar 

  16. J. P. PERDEW and Y. WANG, Phys. Rev. B 46 (1992) 12947.

    Article  Google Scholar 

  17. A. DAL CORSO, A. PASQUARELLO, A. BALDERESCHI and R. CAR, ibid 53 (1996) 1180.

    Article  Google Scholar 

  18. D. VANDERBILT, Phys. Rev. B 41 (1990) 7892.

    Article  Google Scholar 

  19. N. AWAJI et al, Jpn. J. Appl. Phys 35 (1996) L67; S. D. KOSOWSKY et al, Appl. Phys. Lett 70 (1997) 3119.

  20. F. ROCHET, CH. PONCEY, G. DUFOUR, H. ROULET, C. GUILLOT and F. SIROTTI, J. of Non-Crystal. Solids 216 (1997) 148; J. H. OH, H. W. YEOM, Y. HAGIMOTO, K. ONO, M. OSHIMA, N. HIRASHITA, M. NYWA and A. TORIUMI, Phys. Rev. B 63 (2001) 205310.

  21. R. CAR and M. PARRINELLO, Phys. Rev. Lett 55 (1985) 2471; F. TASSONE, F. MAURI and R. CAR, Phys. Rev. B 50 (1994) 10561.

  22. W. ORELLANA, A. J. R. DA SILVA and A. FAZZIO, Phys. Rev. Lett 87 (2001) 155901.

    Article  PubMed  Google Scholar 

  23. A. BONGIORNO and A. PASQUARELLO, J. Phys.: Condens. Matter 15 (2003) S1553.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pasquarello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongiorno, A., Pasquarello, A. O2 oxidation reaction at the Si(100)-SiO2 interface: A first-principles investigation. J Mater Sci 40, 3047–3050 (2005). https://doi.org/10.1007/s10853-005-2663-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2663-7

Keywords

Navigation