Skip to main content
Log in

Numerical modelling of transient liquid phase bonding and other diffusion controlled phase changes

  • Proceedings of the IV International Conference High Temperature Capillarity
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diffusion in material of inhomogeneous composition can induce phase changes, even at a constant temperature. A transient liquid phase (TLP), in which a liquid layer is formed and subsequently solidifies, is one example of such an isothermal phase change. This phenomenon is exploited industrially in TLP bonding and sintering processes. Successful processing requires an understanding of the behaviour of the transient liquid layer in terms of both diffusion-controlled phase boundary migration and capillarity-driven flow.

In this paper, a numerical model is presented for the simulation of diffusion-controlled dissolution and solidification in one dimension. The width of a liquid layer and time to solidification are studied for various bonding conditions. A novel approach is proposed, which generates results of a high precision even with coarse meshes and high interface velocities. The model is validated using experimental data from a variety of systems, including solid/solid diffusion couples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. MACDONALD and T. W. EAGAR, Ann. Rev. Mat. Sci. 22 (1992) 23.

    Article  CAS  ADS  Google Scholar 

  2. Y. ZHOU and T. H. NORTH, Modelling Simul. Mater. Sci. Eng. 1(4) (1993) 505.

    Article  CAS  ADS  Google Scholar 

  3. J. Crank, Free and Moving Boundary Problems (Clarendon Press, Oxford, 1984).

    MATH  Google Scholar 

  4. Y. ZHOU, J. Mat. Sci. Let., 20(9) (2001) 841.

    Article  CAS  Google Scholar 

  5. S. LIU, D. L. OLSON, G. P. MARTIN and G. R. EDWARDS, Welding J. 70(8) (1991) S207.

    Google Scholar 

  6. R. M. Furzeland, J. Inst. Maths Appl. 26 (1980) 411.

    Article  MATH  MathSciNet  Google Scholar 

  7. Y. ZHOU, W. F. GALE and T. H. NORTH, Int. Mat. Rev. 40 (1995) 181.

    CAS  Google Scholar 

  8. H. NAKAGAWA, C. H. LEE and T. H. NORTH, Met. Trans. A 22(2) (1991) 543.

    Article  Google Scholar 

  9. S. R. CAIN, J. R. WILCOX and R. VENKATRAMAN, Acta Mat. 45(2) (1997) 701.

    Article  CAS  Google Scholar 

  10. T. SHINMURA, K. OHSASA and T. NARITA, Mat. Trans. JIM 42(2) (2001) 292.

    Article  CAS  Google Scholar 

  11. C. W. SINCLAIR, G. R. PURDY and J. E. MORRAL, Met. Mat. Trans. A 31(4) (2000) 1187.

    Article  Google Scholar 

  12. C. E. CAMPBELL and W. J. BOETTINGER, Met. Mat. Trans. A 31(2) (2000) 2835.

    Article  Google Scholar 

  13. R. A. TANZILLI and R. W. HECKEL, Trans A.I.M.E. 242 (1968) 2312.

    Google Scholar 

  14. M. KAJIHARA and M. KIKUCHI, Acta Met. Mat., 41(7) (1993) 2045.

    Article  CAS  Google Scholar 

  15. M. RAPPAZ, M. BELLET and M. DEVILLE, “Numerical Modeling in Materials Science and Engineering,” (Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2003).

    Book  Google Scholar 

  16. A. A. SAMARSKII and P. N. VABISHEVICH, “Computational heat transfer. V.1. Mathematical Modelling” (Chichester, Wiley, 1995).

    Google Scholar 

  17. J. C. TANNEHILL, D. A. ANDERSON and R. H. PLETCHER, “Computational Fluid Mechanics and Heat Transfer,” 2nd ed. (Taylor & Francis, London, 1997).

    Google Scholar 

  18. R. W. HECKEL, A. J. HICKL, R. J. ZAEHRING and R. A. TANZILLI, Met. Trans. 3 (1972) 2565.

    Article  CAS  Google Scholar 

  19. C. J. SMITHELL, “Smithell’s Metals Reference Book,” 7th ed. (Butterworth, London, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Illingworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illingworth, T.C., Golosnoy, I.O., Gergely, V. et al. Numerical modelling of transient liquid phase bonding and other diffusion controlled phase changes. J Mater Sci 40, 2505–2511 (2005). https://doi.org/10.1007/s10853-005-1983-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1983-y

Keywords

Navigation