Skip to main content
Log in

Lamellar orientation in the blends of linear low density polyethylene and isotactic polypropylene induced by dynamic packing injection molding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we have carried out 2 dimensional small and wide angle X-ray scattering experiments on the blends of linear low-density polyethylene (LLDPE) and isotactic polypropylene (iPP) obtained by dynamic packing injection molding in which the melt was firstly injected into the mold then forced to move repeatedly in a chamber by two pistons that moved reversibly with the same frequency as the solidification progressively occurred from the mold wall to the molding core part. iPP was found to form a shish-kebab structure with its lamellar stack oriented perpendicularly to the shear flow direction. Very interestingly, the lamellae of LLDPE were found tilted away from shear flow direction with molecular chain still along flow direction, and the tilted angle increases from the skin to the core part. This can be only understood if the intra-lamellar block slip in the chain direction is generally activated during shearing process achieved by dynamic packing injection molding. Our finding is important and seems to provide further support for the idea that the structure of the crystalline lamellae is not continuous but constructed of small building units with thin boundary in between.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. HUGEL, G. STROBL and R. THOMANN, Acta Polym. 50 (1999) 214.

    Article  CAS  Google Scholar 

  2. J. LOOS, P. C. THUENE, P. J. LEMSTRA and J. W. NIEMANTSVERDRIET, Macromolecules 32 (1999) 8910.

    Article  CAS  Google Scholar 

  3. H. CACKOVIC, R. HOSEMANN and W. WILKE, Kolloid-Zeit & Zeit Fuer Polymere 234 (1969) 1000.

    CAS  Google Scholar 

  4. G. STROBL, Eur. Phys. J. E3 (2000) 165.

    Google Scholar 

  5. G. H.MICHLER, in “Kunststoff-Mikromechanik” (Carl Hanser: Verlag, 1992) p. 187.

    Google Scholar 

  6. S. MAGONOV and Y. GODOVSKY, Amer. Laboratory 31 (1999) 55.

    Google Scholar 

  7. Y. MEN and G. STROBL, Polymer 43 (2002) 2761.

    Article  CAS  Google Scholar 

  8. P. S. ALLEN M. J. Beivis, U. K. Pat. 2,170,140B, Eur. Pat. EP0,188,120B1, U. S. Pat.4,925,161(1986).

  9. Y. WANG, H. ZOU, Q. FU, G. ZHANG and K. Z. SHEN, J. Appl. Polym. Sci. 85 (2002) 236.

    CAS  Google Scholar 

  10. Q. FU, Y. WANG, Q. J. LI and G. ZHANG, Macromol. Mater. Eng. 287 (2002) 391.

    Article  CAS  Google Scholar 

  11. Y. WANG, Q. FU, Q. J. LI and G. ZHANG, J. Polym. Sci. Part B: Polym. Phys. 40 (2002) 2086.

    CAS  Google Scholar 

  12. Y. WANG, H. ZOU, Q. FU, G. ZHANG, K. Z. SHEN and R. THOMANN, Macromol. Rapid Commun. 23 (2002) 749.

    CAS  Google Scholar 

  13. B. NA and Q. FU, Polymer 43 (2002) 7367.

    Article  CAS  Google Scholar 

  14. Y. WANG, B. NA, Q. FU and Y. MEN, ibid. 45 (2004) 207.

    CAS  Google Scholar 

  15. B. NA, Y. WANG, Q. ZHENG, Y. PENG and Q. FU, J. Polym. Sci, Part B 42 (2004) 1831.

    Article  CAS  Google Scholar 

  16. B. NA and Q. FU, Polymer, (in press)

  17. Z. BARTCZAK, A. S. ARGON and R. E. COHEN, Polymer 35 (1994) 3427.

    Article  CAS  Google Scholar 

  18. N. GERRITS and Y. TERVOORT, J. Mater. Sci. 27 (1992) 1385.

    Article  CAS  Google Scholar 

  19. B. LOTZ and J. C. WITTMANN, J. Polym. Sci. Polym. Phys. Ed. 24 (1986) 1559.

    CAS  Google Scholar 

  20. F. J. PADDEN and H. D. KEITH, J. Appl. Phys. 44 (1973) 1217.

    Article  CAS  Google Scholar 

  21. R. HISS, S. HOBERIKA, C. LYNN and G. STROBL, Macromolecules 32 (1999) 4390.

    Article  CAS  Google Scholar 

  22. S. HOBERIKA, Y. MEN and G. STROBL, ibid. 33 (2000) 1827.

    Google Scholar 

  23. Y. MEN and G. STROBL, ibid. 36 (2003) 1889.

    CAS  Google Scholar 

  24. Idem. Chin. J. Polym. Sci. 20 (2002) 161.

    CAS  Google Scholar 

  25. Y. MEN, STROBL and P. WETTER, e-Polym. 2002, No.040.

  26. Y. MEN and G. STROBL, J. Macromol. Sci. Pyhs. B 40 (2001) 775.

    Google Scholar 

  27. Y. MEN, J. RIEGER and G. STROBL, Phys. Rew. Lett. 91 (2003).

  28. A. COWKING and J. RIDER, J. Mater. Sci. 4 (1969) 1051.

    Article  CAS  Google Scholar 

  29. A. KELLER and D. POPE, ibid. 6 (1971) 453.

    Article  CAS  Google Scholar 

  30. R. J. YOUNG, P. B. BOWDEN, J. RITCHIE and J. RIDER, ibid. 8 (1973) 23.

    CAS  Google Scholar 

  31. P. B. BOWDEN and R. J. YOUNG, ibid. 9 (1974) 2034.

    Article  CAS  Google Scholar 

  32. Z. BATRTCZAK, R. E. COHEN and A. S. ARGON, Macromolecules 25 (1992) 4692.

    Google Scholar 

  33. Y. F. MEN, J. RIEGER, H.-F. ENDELER and D. LILGE, ibid. 36 (2003) 4689.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Na, B., Zhang, Q. et al. Lamellar orientation in the blends of linear low density polyethylene and isotactic polypropylene induced by dynamic packing injection molding. J Mater Sci 40, 6409–6415 (2005). https://doi.org/10.1007/s10853-005-1746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1746-9

Keywords

Navigation