Skip to main content
Log in

The growth and electrical transport properties of self-organized metal/oxide nanostructures formed by anodizing Ta-Al thin-film bilayers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Anodizing of Ta-Al metal bilayers (Al on Ta) sputter-deposited onto SiO2 substrates was performed in oxalic acid electrolytes at anode potentials of 53 to 21.5 V in order to form nanoporous alumina layers and sequentially oxidize the tantalum underlayers through the alumina pores. The films formed consist of arrays of tantalum oxide nanohillocks percolating through the residual tantalum layer down to the substrate, so that a self-organized network of tantalum nanowires forms between the substrate and the alumina film. The average width (25–<10 nm), length (70–35 nm), and population density (109–1011 cm-2) of the nanowires are systematically defined by the initial tantalum thickness (8–22 nm) and the anodizing conditions. The mesh-like, nano-sized morphologies of the tantalum underlayers result in a remarkably wide range of potential-dependent, controlled electrical sheet resistances (102–107 Ω/sq). The periodical, tunable, metal/insulator film structure, allowing an increased transition to hopping or tunneling conduction at elevated temperature, leads to negative temperature coefficients of resistance, ranging 300 to 5 ppm/K. Oscillations of the potential-dependent dc conductance registered in the films at room temperature are attributed to the quantum-size effects in the metal/oxide nanostructures. The films are of technological importance for fabrication of thin-film, planar, adjustable resistors with significantly improved performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. BHUSHAN (Ed.), “Springer Handbook of Nanotechnology” (Spinger-Verlag, Berlin, Heidelberg, New York, 2003).

    Google Scholar 

  2. A. MOZALEV, M. SAKAIRI and H. TAKAHASHI, J. Electrochem. Soc. 151 (2004) F257–F268.

    Article  CAS  Google Scholar 

  3. A. MOZALEV, M. SAKAIRI, I. SAEKI and H. TAKAHASHI, Electrochim. Acta 48 (2003) 3155.

    Article  CAS  Google Scholar 

  4. A. MOZALEV, A. SURGANOV and S. MAGAINO, ibid. 44 (1999) 3891.

    Article  CAS  Google Scholar 

  5. G. C. SCHWARTZ and V. PLATTER, J. Electrochem. Soc. 122 (1975) 1508.

    CAS  Google Scholar 

  6. Idem., ibid. 123 (1976) 34.

    CAS  Google Scholar 

  7. V. SURGANOV and A. MOZALEV, Microelectron. Eng. 37/38 (1997) 329.

    CAS  Google Scholar 

  8. S. LAZAROUK, S. KATSOUBA, A. LESHOK, A. DEMIANOVICH, V. STANOVSKI, S. VOITECH, V. VYSOTSKI and V. PONOMAR, ibid. 50 (2000) 321.

    CAS  Google Scholar 

  9. I. VRUBLEVSKY, V. PARKOUN, V. SOKOL and J. SCHRECKENBACH, Appl. Sur. Sci. 236 (2004) 270.

    CAS  Google Scholar 

  10. G. C. WOOD, in “Oxides and Oxide Films”, edited by J. W. Diggle (Marcell Dekker, New York, 1987) Vol. 2, p. 41.

    Google Scholar 

  11. R. C. FURNEAUX G. E. THOMPSON and G. C. WOOD, Corros. Sci. 18 (1978) 853.

    CAS  Google Scholar 

  12. M. NAGAYAMA, H. TAKAHASHI and K. FUJIMOTO, in “Application of Complex Plane Analysis to Electrochemistry”, (USA Office of The Electrochemical Society of Japan, Cleveland, OH 1982) p. 1.

    Google Scholar 

  13. A. LLOYD SPETZ, D. SCHMEIBER, A. BARANZAHI, B. WALIVAARA, W. GOPEL and I. LUNDSTROM, Thin Solid Films 299 (1997) 183.

    CAS  Google Scholar 

  14. A. MOZALEV, Ph.D. thesis, Belarusian State University of Informatics and Radio-electronics, Minsk, 1992.

  15. H. HABAZAKI, P. SKELDON, G. E. THOMPSON and G. C. WOOD, Phil. Mag. B71 (1995) 81.

    Google Scholar 

  16. J. DE LAET, H. TERRYN and J. VEREECKEN, Electrochimica Acta 41 (1995) 1155.

    Google Scholar 

  17. F. J. HIMPSEL, J. E. ORTEGA, G. J. MANKEY and R. F. WILLIS, Adv. Phys. 47 (1998) 511.

    CAS  Google Scholar 

  18. L. MAISSEL and R. GLANG, “Handbook of Thin Film Technology” (McGraw-Hill, New York, 1970) Vol. 2.

    Google Scholar 

  19. M. MILUN, Croatica Chemica Acta 74(4) (2001) 887.

    CAS  Google Scholar 

  20. K. CHU, J. P. CHANG, M. L. STEIGERWALD, R. M. FLEMING, R. L. OPILA, D. V. LANG, R. B. VAN DOVER and C. D. W. JONES, J. Appl. Phys. 91 (2002) 308.

    CAS  Google Scholar 

  21. E. I. ROGACHEVA, T. V. TAVRINA, O. N. NASHCHEKINA, S. N. GRIGOROV, K. A. NASEDKIN, M. S. DRESSELHAUS and S. B. CRONIN, Appl. Phys. Lett. 15 (2002) 2690.

    Google Scholar 

  22. D. A. WHARAM, T. J. THORNTON, R. NEWBURY, M. PEPPER, H. AHMED, J. E. F. FROST, D. G. HASKO, D. C. PEACOCK, D. A. RITCHIE and G. A. C. JONES, J. Phys. C: Solid State Phys. 21 (1988) L209.

    Google Scholar 

  23. C. J. MULLER, J. M. KRANS, T. N. TODOROV and M. A. REED, Phys. Rev. B 53 (1996) 1022.

    Google Scholar 

  24. M. JALOCHOWSKI, E. BAUER, H. KNOPPE and G. LILIENKAMP, ibid. 45 (1992) 13607.

    Google Scholar 

  25. A. MOZALEV, M. SAKAIRI and H. TAKAHASHI, in Proceedings of the 18th National Conference of Japan's Anodizing Research Society (ARS), 2001, Osaka, Japan, p. 55.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozalev, A., Gorokh, G., Sakairi, M. et al. The growth and electrical transport properties of self-organized metal/oxide nanostructures formed by anodizing Ta-Al thin-film bilayers. J Mater Sci 40, 6399–6407 (2005). https://doi.org/10.1007/s10853-005-1620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1620-9

Keywords

Navigation