Skip to main content
Log in

Determination of the alloy scattering potential in modulation-doped In0.53Ga0.47As/In0.52Al0.48As heterojunctions from magnetotransport measurements

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The results of magnetotransport measurements are used to investigate the scattering mechanisms and hence to determine the alloy disorder scattering potential in modulation-doped In0.53Ga0.47As/In0.52Al0.48As heterojunction samples with spacer layer thickness in the range from 0 to 400 Å. The experimental data for the temperature dependence of Hall mobility are compared with the electron mobility calculated for major scattering processes by using the theoretical expressions available in the literature. It is found that alloy disorder scattering and polar optical phonon scattering are the dominant scattering mechanisms at low and high temperatures, respectively. However, the effects of acoustic phonon scattering, remote-ionized impurity scattering, background-ionized impurity scattering, and interface roughness scattering on electron mobility are much smaller than that of alloy disorder scattering, at all temperatures. The alloy disorder scattering potential is determined by fitting the experimental data for low-temperature transport mobility of two-dimensional electrons in the first subband of the heterojunction sample with the calculated total mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. BHATTACHARYA, “Properties of Lattice-Matched and Strained Indium Gallium Arsenide” (INSPEC, London, 1993).

  2. Y. TEKADA and T. P. PEARSALL, Electron. Lett. 17 (1981) 574.

    Google Scholar 

  3. G. BASTARD, Appl. Phys. Lett. 43 (1983) 591.

    Article  CAS  Google Scholar 

  4. P. K. BASU and B. R. NAG, ibid. 43 (1983) 689.

    Article  CAS  Google Scholar 

  5. P. K. BASU, D. CHATTOPADHYAY and C. K. SARKAR, J. Phys. C: Solid State Phys. 19 (1986) L173.

    Article  CAS  Google Scholar 

  6. E. KOBAYASHI, T. MATSUOKA, K. TANIGUCHI and C. HAMAGUCHI, Solid-State Electron. 32 (1989) 1845.

    Article  CAS  Google Scholar 

  7. T. MATSUOKA, E. KOBAYASHI, K. TANIGUCHI, C. HAMAGUCHI and S. SASA, Jpn. J. Appl. Phys. 29 (1990) 2017.

    Article  CAS  Google Scholar 

  8. D. VASILESKA, C. PRASAD, H. H. WIEDER and D. K. FERRY, Phys. Stat. Sol B 239 (2003) 103.

    Article  CAS  Google Scholar 

  9. E. TIRAŞ, M. CANKURTARAN, H. ÇELİK, A. BOLAND THOMS and N. BALKAN, Superlattices Microstruct. 29 (2001) 147.

    Google Scholar 

  10. S. ALTINÖZ, E. TIRAS, A. BAYRAKLI, H. CELIK, M. CANKURTARAN and N. BALKAN, Phys. Status Solidi A 182 (2000) 717.

    Google Scholar 

  11. J. E. HASBUN, Phys. Rev. B 52 (1995) 11989.

    Article  CAS  Google Scholar 

  12. K. LEE, M. SHUR, T. J. DRUMMOND and H. MORKOC, J. Appl. Phys. 54 (1983) 6432.

    CAS  Google Scholar 

  13. J. J. HARRIS, J. A. PALS and R. WOLTER, Rep. Prog. Phys. 52 (1989) 1217.

    Article  Google Scholar 

  14. G. BASTARD, “Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique” (Les Ulis, 1988).

  15. W. WALUKIEWICZ, H. E. RUDA, J. LAGOWSKI and H. C. GATOS, Phys. Rev. B 30 (1984) 4571.

    Article  CAS  Google Scholar 

  16. T. ANDO, A. B. FOWLER and F. STERN, Rev. Mod. Phys. 54 (1982) 437.

    Article  CAS  Google Scholar 

  17. K. SEEGER, “Semiconductor Physics —An Introduction, 6th ed.” (Springer-Verlag, New York, 1997).

    Google Scholar 

  18. K. HESS, Appl. Phys. Lett. 35 (1979) 484.

    CAS  Google Scholar 

  19. H. SAKAKI, T. NODA, K. HIRIKAWA, M. TANAKA, and T. MATSUSUE, ibid. 51 (1987) 1934.

    Article  CAS  Google Scholar 

  20. N. BALKAN, R. GUPTA, M. E. DANIELS, B. K. RIDLEY, and M. EMENY, Semicond. Sci. Technol. 5 (1990) 986.

    Article  CAS  Google Scholar 

  21. B. K. RIDLEY, B. E. FOUTZ, and L. F. EASTMAN, Phys. Rev. B 61, (2000) 16862.

    Article  CAS  Google Scholar 

  22. K. HIRAKAWA, H. SAKAKI and J. YOSHINO, Appl. Phys. Lett. 45 (1984) 253.

    Article  CAS  Google Scholar 

  23. M. J. KANE, N. APSLEY, D. A. ANDERSON, L. L. TAYLOR and T. KERR, J. Phys. C: Solid State Phys. 18 (1985) 5629.

    Article  CAS  Google Scholar 

  24. J. J. HARRIS, J. M. LAGEMAA, S. J. BATTERSBY, C. M. HELLON, C. T. FOXON and D. E. LACKLISON, Semicond. Sci. Technol. 3 (1988) 773.

    Article  CAS  Google Scholar 

  25. S. J. BATTERSBY, F. M. SELTEN, J. J. HARRIS and C. T. FOXON, Solid-State Electron. 31 (1988) 1083.

    Article  CAS  Google Scholar 

  26. K. Y. CHENG, A. Y. CHO and W. R. WAGNER, J. Appl. Phys. 52 (1981) 6328.

    CAS  Google Scholar 

  27. T. TANAHASHI, K. NAKAJIMA, A. YAMAGUCHI, and I. UMEBU, Appl. Phys. Lett. 43 (1983) 1030.

    Article  CAS  Google Scholar 

  28. A. J. STRAW VICKERS and J. S. ROBERTS, Solid-State Electron. 32 (1989) 1539.

    Google Scholar 

  29. T. P. PEARSALL, “GaInAsP Alloy Semiconductors “1st ed.” (Wiley, New York, 1982).

    Google Scholar 

  30. F. Y. JUANG, P. K. BHATTACHARYA and J. SINGH, Appl. Phys. Lett. 48 (1980) 290.

    Google Scholar 

  31. S. MORI and T. ANDO, J. Phys. Soc. Jpn. 48 (1980) 865.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tiraş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiraş, E., Altinöz, S., Cankurtaran, M. et al. Determination of the alloy scattering potential in modulation-doped In0.53Ga0.47As/In0.52Al0.48As heterojunctions from magnetotransport measurements. J Mater Sci 40, 6391–6397 (2005). https://doi.org/10.1007/s10853-005-1599-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1599-2

Keywords

Navigation