Skip to main content
Log in

A new understanding of near-threshold damage for 200 keV irradiation in silicon

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently we reported room temperature point defect creation and subsequent extended defect nucleation in nitrogen-doped silicon during 200 kV electron irradiation, while identical irradiation of nitrogen-free silicon produced no effect. In this paper, first principles calculations are combined with new transmission electron microscope (TEM) observations to support a new model for elastic electron-silicon interactions in the TEM, which encompasses both nitrogen doped and nitrogen free silicon. Specifically, the nudged elastic band method was used to study the energetics along the diffusion path during an electron collision event in the vicinity of a nitrogen pair. It was found that the 0 K estimate for the energy barrier of a knock-on event is lowered from ∼ 12 to 6.2 eV. However, this is still inadequate to explain the observations. We therefore propose an increase in the energy barrier for Frenkel pair recombination associated with N2-V bonding. Concerning pure silicon, stacking fault formation near irradiation-induced holes demonstrates the participation of bulk processes. In low oxygen float zone material, 2–5 nm voids were formed, while oxygen precipitation in Czochralski Si has been verified by electron energy-loss spectroscopy. Models of irradiation-induced point defect aggregation are presented and it is concluded that these must be bulk and not surface mediated phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. ROZGONYI, in “Semiconductor Silicon 2002,” in Proceedings of the Electrochemical Society 2002–1 (The Electrochemical Society, New Jersey, 2002) p. 149.

  2. M. TAMATSUKA, N. KOBAYASHI, S. TOBE and T. MATSUI, in Proceedings of the Electrochemical Society 99–1 (The Electrochemical Society, New Jersey, 1999) p. 456.

  3. K. NAKAI, Y. INOUE, H. YOKOTA, A. IKARI, J. TAKAHASHI, A. TACHIKAWA, K. KITAHARA, Y. OHTA and W. OHASHI, J. Appl. Phys. 89 (2001) 4301.

    Article  Google Scholar 

  4. A. KAROUI, F. S. KAROUI, G. A. ROZGONYI, M. HOURAI and K. SUEOKA, J. Electrochem. Soc. 150(2003) G771.

    Article  Google Scholar 

  5. H. KAGESHIMA, A. TAGUCHI and K. WADA, Appl. Phys. Lett. 76(2000) 3718.

    Article  Google Scholar 

  6. N. STODDARD, A. KAROUI, G. DUSCHER, A. KVIT and G. ROZGONYI, Electrochem. Sol. State Lett. 6 (2003) G134.

    Article  Google Scholar 

  7. S. J. PENNYCOOK and L. A. BOATNER, Nature 366 (1988) 565.

    Article  Google Scholar 

  8. P. E. BLOCHL, E. SMARGIASSI, R. CAR, D. B. LAKS, W. ANDREONI and S. T. PANTELIDES, Phys. Rev. Lett. 70 (1993) 2435.

    Article  PubMed  Google Scholar 

  9. G. D. WATKINS, Mat. Sci. Semicond. Proc. 3 (2000) 227.

    Article  Google Scholar 

  10. R. S. AVERBACK and T. DIAZ DE LA RUBIA, Sol. State Phys. 51 (1997) 281.

    Google Scholar 

  11. W. WINDL, T. J. LENOSKY, J. D. KRESS and A. F. VOTER, Nucl. Inst. Meth. Phys. B 141 (1998) 61.

    Google Scholar 

  12. J. YAMASAKI, S. TAKEDA and K. TSUDA, Phys. Rev. B 65 (2002) 115213.

    Article  Google Scholar 

  13. D. N. SEIDMAN, R. S. AVERBACK, P. R. OKAMOTO and A. C. BAILY, Phys. Rev. Lett. 58 (1987) 900.

    Article  PubMed  Google Scholar 

  14. L. REIMER, in “Transmission Electron Microscopy: The Physics of Image Formation and Microanalysis” (Springer-Verlag, Berlin, 1993) p. 210.

    Google Scholar 

  15. R. F. EGERTON, in “Electron Energy-Loss Spectroscopy in the Electron Microscope,” 2nd ed. (Plenum Press, New York, 1996) pp. 137, 186.

    Google Scholar 

  16. N. STODDARD, G. DUSCHER, A. KAROUI, F. STEVIE and G. ROZGONYI, “Segregation and Enhanced Diffusion of Nitrogen in Silicon Induced by Low Energy Ion Bombardment,” Submitted to J. Appl. Phys, 2004.

  17. H. SAWADA, K. KAWAKAMI, A. IKARI and W. OHASHI, Phys. Rev. B 65 (2002) 075201.

    Article  Google Scholar 

  18. V. S. VAVILOV, A. E. KIV and O. R. NIYAZOVA, Phys. Stat. Sol. (a)32 (1975) 11.

    Google Scholar 

  19. This area is 1/4 the area of one side of the Si unit cell, about the interaction area of a beam electron

  20. This is the probability for interaction in 1 nm thickness, 0.00001, divided by the 4 atoms in 1/4 of the unit cell area over two unit cells’ thickness

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Stoddard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoddard, N., Duscher, G., Windl, W. et al. A new understanding of near-threshold damage for 200 keV irradiation in silicon. J Mater Sci 40, 3639–3650 (2005). https://doi.org/10.1007/s10853-005-1059-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1059-z

Keywords

Navigation