Skip to main content
Log in

Solving a k-Node Minimum Label Spanning Arborescence Problem to Compress Fingerprint Templates

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

We present a novel approach for compressing relatively small unordered data sets by means of combinatorial optimization. The application background comes from the field of biometrics, where the embedding of fingerprint template data into images by means of watermarking techniques requires extraordinary compression techniques. The approach is based on the construction of a directed tree, covering a sufficient subset of the data points. The arcs are stored via referencing a dictionary, which contains “typical” arcs w.r.t. the particular tree solution. By solving a tree-based combinatorial optimization problem we are able to find a compact representation of the input data. As optimization method we use on the one hand an exact branch-and-cut approach, and on the other hand heuristics including a greedy randomized adaptive search procedure (GRASP) and a memetic algorithm. Experimental results show that our method is able to achieve higher compression rates for fingerprint (minutiae) data than several standard compression algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical report 124, Digital SRC Research Report (1994)

  3. Chang, R.-S., Leu, S.-J.: The minimum labeling spanning trees. Inf. Process. Lett. 63(5), 277–282 (1997)

    Article  MathSciNet  Google Scholar 

  4. Cherkassky, B.V., Goldberg, A.V.: On implementing the push-relabel method for the maximum flow problem. Algorithmica 19(4), 390–410 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chwatal, A.M., Raidl, G.R.: Applying branch-and-cut for compressing fingerprint templates (short abstract). In: Proceedings of the European Conference on Operational Research (EURO) XXII, Prague (2007)

  6. Chwatal, A.M., Raidl, G.R., Dietzel, O.: Compressing fingerprint templates by solving an extended minimum label spanning tree problem. In: Proceedings of the Seventh Metaheuristics International Conference (MIC), Montreal (2007)

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT, Cambridge (2001)

    MATH  Google Scholar 

  8. Dietzel, O.: Combinatorial optimization for the compression of biometric templates. Master’s thesis, Vienna University of Technology, Institute of Computer Graphics and Algorithms (2008)

  9. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garris, M.D., McCabe, R.M.: NIST special database 27: fingerprint minutiae from latent and matching tenprint images. Technical report, National Institute of Standards and Technology (2000)

  11. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and vlsi. J. ACM 32(1), 130–136 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. ILOG Concert Technology, CPLEX: ILOG. http://www.ilog.com. Version 11.0 (2009)

  13. Jain, A., Uludag, U.: Hiding fingerprint minutiae in images. In: Proceedings of Third Workshop on Automatic Identification Advanced Technologies, pp. 97–102 (2002)

  14. Krumke, S.O., Wirth, H.-C.: On the minimum label spanning tree problem. Inf. Process. Lett. 66(2), 81–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Library for Efficient Datastructures and Algorithms (LEDA): Algorithmics Solutions Software GmbH. http://www.algorithmic-solutions.com/. Version 5.1 (2009)

  16. Magnanti, T., Wolsey, L.: Optimal trees. In: Network Models. Handbook in Operations Research and Management Science, pp. 503–615. North Holland, Amsterdam (1995)

    Google Scholar 

  17. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, New York (2003)

    MATH  Google Scholar 

  18. Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM Trans. Inf. Sys. 16(3), 256–294 (1998)

    Article  Google Scholar 

  19. Nummela, J., Julstrom, B.A.: An effective genetic algorithm for the minimum-label spanning tree problem. In: GECCO ’06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 553–558. ACM, New York (2006)

    Chapter  Google Scholar 

  20. Raidl, G.R., Chwatal, A.: Fingerprint template compression by solving a minimum label k-node subtree problem. In: Simos, E. (ed.) Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 936, pp. 444–447. American Institute of Physics, New York (2007)

    Google Scholar 

  21. Saleh, A., Adhami, R.: Curvature-based matching approach for automatic fingerprint identification. In: Proceedings of the Southeastern Symposium on System Theory, pp. 171–175 (2001)

  22. Sayood, K.: Introduction to Data Compression, 3rd edn. Morgan Kaufmann, San Mateo (2006)

    Google Scholar 

  23. Varshney, L.R., Goyal, V.K.: Benefiting from disorder: source coding for unordered data. arXiv, abs/0708.2310 (2007)

  24. Vitter, J.S.: Design and analysis of dynamic huffman codes. J. ACM 34(4), 825–845 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1999)

    MATH  Google Scholar 

  26. Xiong, Y., Golden, B., Wasil, E.: A one-parameter genetic algorithm for the minimum labeling spanning tree problem. IEEE Trans. Evol. Comput. 9(1), 55–60, 2 (2005)

    Article  Google Scholar 

  27. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas M. Chwatal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chwatal, A.M., Raidl, G.R. & Oberlechner, K. Solving a k-Node Minimum Label Spanning Arborescence Problem to Compress Fingerprint Templates. J Math Model Algor 8, 293–334 (2009). https://doi.org/10.1007/s10852-009-9109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-009-9109-1

Keywords

Navigation