Skip to main content
Log in

Construction of Constant GC-Content DNA Codes via a Variable Neighbourhood Search Algorithm

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

DNA codes are sets of words of fixed length n over the alphabet {A,C,G,T} which satisfy a number of combinatorial conditions. They have application in DNA computing, in DNA microarray technologies and as molecular bar codes. The combinatorial conditions considered are (i) minimum Hamming distance d, (ii) fixed GC content and, in some cases (iii) minimum distance d between any codeword and the reverse Watson-Crick complement of any codeword. The problem is to find DNA codes with the maximum number of codewords. In this paper the construction of DNA codes is studied from an algorithmic perspective. Four local search algorithms are developed and combined in a variable neighbourhood search framework. The algorithm has been run extensively. Over 254 problems considered, it was able to match or improve the best known lower bounds in 180 cases, with 52 new bests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Arita, M., Kobayashi, S.: DNA sequence design using templates. New Gener. Comput. 20, 263–277 (2002)

    Article  MATH  Google Scholar 

  3. Bi, H., Chen, J., Deaton, R., Garzon, M.H., Rubin, H., Wood, D.H.: In vitro selection of non-crosshybridizing oligonucleotides for computation. Nat. Comput. 2, 417–426 (2003)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.: Methods for sorting polynucleotides using oligonucleotide tags. US Patent No. 5604097 (1997)

  5. Brenner, S., Lerner, R.A.: Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. U. S. A. 89, 5381–5383 (1992)

    Article  Google Scholar 

  6. Brouwer, A.E., Shearer, J.B., Sloane, N.J.A., Smith, W.D.: A new table of constant weight codes. IEEE Trans. Inf. Theory 36, 1334–1380 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9, 375–382 (1990)

    Article  MATH  Google Scholar 

  8. Chee, Y.M., Ling, S.: Improved lower bounds for constant GC-content DNA codes. IEEE Trans. Inf. Theory 54(1), 391–394 (2008)

    Article  MathSciNet  Google Scholar 

  9. Deaton, R., Garzon, M., Murphy, R.C., Rose, J.A., Franceschetti, D.R., Stevens Jr., S.E.: In: Late Breaking Papers at the First Annual Conference on Genetic Programming, pp. 9–15. Stanford, London (1996) (chap. Genetic search of reliable encodings for DNA-based computation)

  10. Fodor, S.P., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T., Solas, D.: Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991)

    Article  Google Scholar 

  11. Frutos, A.G., Liu, Q., Thiel, A.J., Sanner, A.M.W., Condon, A.E., Smith, L.M., Corn, R.M.: Demonstration of a word design strategy for DNA computing on surfaces. Nucleic Acids Res. 25, 4748–4757 (1997)

    Article  Google Scholar 

  12. Gaborit, P., King, O.D.: Linear construction for DNA codes. Theor. Comp. Sci. 334, 99–113 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hansen, P., Mladenović, N.: Variable neighbourhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    Article  MATH  Google Scholar 

  14. Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-free DNA languages. Acta Inform. 40, 119–157 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. King, O.D.: Bounds for DNA codes with constant GC-content. Electron. J. Comb. 10, #R33 (2003)

    Google Scholar 

  16. King, O.D.: Tables of lower bounds for DNA codes with constant GC-content (2006). http://llama.med.harvard.edu/~king/dnacodes.html. Last checked: January 2008

  17. Kobayashi, S., Konto, T., Arita, M.: On template methods for DNA sequence design. Lect. Notes Comput. Sci. 2568, 205–214 (2003)

    Article  Google Scholar 

  18. Li, M., Lee, H.J., Condon, A.E., Corn, R.M.: DNA word design strategy for creating sets of non-interacting oligonucleotides for DNA microarrays. Langmuir 18, 805–812 (2002)

    Article  Google Scholar 

  19. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA word design. J. Comput. Biol. 8, 201–219 (2001)

    Article  Google Scholar 

  20. Montemanni R., Smith D.H.: Heuristic construction of constant weight binary codes. Technical report IDSIA-12-07. Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (December 2007)

  21. Pardalos, P., Xue, J.: The maximum clique problem. J. Glob. Optim. 4(3), 301–328 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  23. Shoemaker, D., Lashkari, D.A., Morris, D., Mittmann, M., Davis, R.W.: Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat. Genet. 16, 450–456 (1996)

    Article  Google Scholar 

  24. Smith, D.H., Hughes, L.A., Perkins, S.: A new table of constant weight binary codes of length greater than 28. Electron. J. Comb. 13(1), #A2 (2006)

    MathSciNet  Google Scholar 

  25. Tulpan, D.C., Hoos, H.H.: Hybrid randomised neighbourhoods improve stochastic local search for DNA code design. Lect. Notes Comput. Sci. 2671, 418–433 (2003)

    Article  MathSciNet  Google Scholar 

  26. Tulpan, D.C., Hoos, H.H., Condon, A.E.: Stochastic local search algorithms for DNA word design. Lect. Notes Comput. Sci. 2568, 229–241 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Montemanni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montemanni, R., Smith, D.H. Construction of Constant GC-Content DNA Codes via a Variable Neighbourhood Search Algorithm. J Math Model Algor 7, 311–326 (2008). https://doi.org/10.1007/s10852-008-9087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-008-9087-8

Keywords

Mathematics Subject Classifications (2000)

Navigation