Journal of Mathematical Modelling and Algorithms

, Volume 6, Issue 3, pp 433–454 | Cite as

Evaluating Parallel Simulated Evolution Strategies for VLSI Cell Placement

  • Sadiq M. Sait
  • Mustafa Imran Ali
  • Ali Mustafa Zaidi


Simulated Evolution (SimE) is an evolutionary metaheuristic that has produced results comparable to well established stochastic heuristics such as SA, TS and GA, with shorter runtimes. However, for optimization problems with a very large set of elements, such as in VLSI cell placement and routing, runtimes can still be very large and parallelization is an attractive option for reducing runtimes. Compared to other metaheuristics, parallelization of SimE has not been extensively explored. This paper presents a comprehensive set of parallelization approaches for SimE when applied to multiobjective VLSI cell placement problem. Each of these approaches are evaluated with respect to SimE characteristics and the constraints imposed by the problem instance. Conclusions drawn can be extended to parallelization of SimE when applied to other optimization problems.


Optimization Parallel algorithms Evolutionary metaheuristic Simulated evolution VLSI cell placement Cluster computing 

Mathematics Subject Classifications (2000)

90C27 68T20 68W10 68W40 68W20 68U07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kling, R.M., Banerjee, P.: ESP: placement by simulated evolution. IEEE Trans. Comput.-aided Des. 3(8), 245–255 (1989)CrossRefGoogle Scholar
  2. 2.
    Sait, S.M., Youssef, H.: Iterative Computer Algorithms with Applications in Engineering: Solving Combinatorial Optimization Problems. IEEE Computer Society Press, Los Alamitos, CA (1999)MATHGoogle Scholar
  3. 3.
    Sait, S.M., Youssef, H.: VLSI Physical Design Automation: Theory and Practice. World Scientific, Singapore (2001)Google Scholar
  4. 4.
    Crainic, T.G., Toulouse, M.: Parallel strategies for metaheuristics. In: Glover, F.W., Kochenberger, G.A. (eds.) Handbook of Metaheuristic, pp. 465–514. Kluwer, Boston, MA (2003)Google Scholar
  5. 5.
    Cung, V.-D., Martins, S.L., Ribeiro, C.C., Roucairol, C.: Strategies for the parallel implementation of metaheuristics. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 263–308. Kluwer, Boston, MA (2001)Google Scholar
  6. 6.
    Ekşiog͂lu, S.D., Pardalos, P.M., Resende, M.G.C.: Models for parallel and distributed computation – theory, algorithmic techniques and applications. In: Corrêa, R., Dutra, I., Fiallos, M., Gomes, F. (eds.) Parallel Metaheuristics for Combinatorial Optimization, pp. 179–206. Kluwer, Boston, MA (2002)Google Scholar
  7. 7.
    Sait, S.M., Khan, J.A.: Simulated evolution for timing and low power VLSI standard cell placement. Eng. Appl. Artif. Intell. (Elsevier), 16(5–6), 407–423 (2003)CrossRefGoogle Scholar
  8. 8.
    Chandy, J.A., Kim, S., Ramkumar, B., Parkes, S., Banerjee, P.: An evaluation of parallel simulated annealing strategies with application to standard cell placement. IEEE Trans. Comput.-aided Des. Integr. Circuits Syst. 16(4), 398–410 (1997)CrossRefGoogle Scholar
  9. 9.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man. Cybern. 18(1), 183–190 (1988)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sait, S.M., Zaidi, A., Ali, M.I.: Asynchronous MMC based parallel SA schemes for multiobjective standard cell placement. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Kos, Greece (21–24 May 2006)Google Scholar
  11. 11.
    Sait, S.M., Ali, M.I., Zaidi, A.: Multiobjective VLSI cell placement using distributed simulated evolution algorithm. In: Proceedings of the IEEE International Symposium on Circuits and Systems, Kobe, Japan, pp. 6226–6229 (23–26 May 2005)Google Scholar
  12. 12.
    Minhas, M.R., Sait, S.M.: A parallel tabu search algorithm for optimizing multiobjective VLSI placement. In: Lecture Notes in Computer Science Series, pp. 587–595. Springer, Berlin Heidelberg New York (2005)Google Scholar
  13. 13.
    Sait, S.M., Faheemuddin, M., Minhas, M.R., Sanaullah, S.: Multiobjective VLSI cell placement using distributed genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, Washington, DC, pp. 1585–1586 (24–29 June 2005)Google Scholar
  14. 14.
    Adamidis, P: Review of Genetic Algorithms Bibliography. Technical Report, Aristotle University of Thessaloniki, Greece (1994)Google Scholar
  15. 15.
    Cantú-Paz, E.: A survey of parallel genetic algorithms. In: Calculateurs Parallèles, Reseaux et Systems Repartis (1998)Google Scholar
  16. 16.
    De Falco, I., Del Balio, R., Tarantino, E., Vaccaro, R.: Improving search by incorporating evolution principles in parallel tabu search. In: Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, FL, pp. 823–828 (27-29 June 1994)Google Scholar
  17. 17.
    Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 417, 65–74 (1990)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Garica, B.-L., Potvin, J.-Y., Rousseau, J.-M.: A parallel implementation of the tabu search heuristic for vehicle routing problems with time window constraints. Comput. Oper. Res. 21(9), 1025–1033 (1994)CrossRefGoogle Scholar
  19. 19.
    Crainic, T.G., Toulouse, M., Gendreau, M.: Towards a taxonomy of parallel tabu search heuristics. INFORMS J. Comput. 9(1), 61–72 (1997)MATHCrossRefGoogle Scholar
  20. 20.
    Lee, S.-Y., Lee, K.G.: Synchronous and asynchronous parallel simulated annealing with multiple-Markov chains. IEEE Trans. Parallel Distrib. Syst. 7(10), 993–1008 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Sadiq M. Sait
    • 1
  • Mustafa Imran Ali
    • 1
  • Ali Mustafa Zaidi
    • 1
  1. 1.Computer Engineering DepartmentKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations