Flusser, J., Suk, T., Zitová, B.: 2D and 3D Image Analysis by Moments. Wiley, Chichester (2016)
Book
Google Scholar
Flusser, J.: On the independence of rotation moment invariants. Pattern Recogn. 33(9), 1405 (2000)
Article
Google Scholar
Flusser, J.: On the inverse problem of rotation moment invariants. Pattern Recogn. 35(12), 3015 (2002)
Article
Google Scholar
Suk, T., Flusser, J.: Affine moment invariants generated by graph method. Pattern Recogn. 44(9), 2047 (2011)
Article
Google Scholar
Hjouji, A., EL-Mekkaoui, J., Jourhmane, M., Bouikhalene, B.: New set of non-separable orthogonal invariant moments for image. J. Math. Imaging Vis. 62, 606–624 (2020)
MathSciNet
Article
Google Scholar
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory 8(2), 179 (1962)
Article
Google Scholar
Abu-Mostafa, Y.S., Psaltis, D.: Recognitive aspects of moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 698 (1984)
Article
Google Scholar
Teh, C.H., Chin, R.T.: On image analysis by the method of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 496 (1988)
Article
Google Scholar
Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357 (2001)
MathSciNet
Article
Google Scholar
Yang, B., Li, G., Zhang, H., Dai, M.: Rotation and translation invariants of Gaussian–Hermite moments. Pattern Recogn. Lett. 32(2), 1283 (2011)
Article
Google Scholar
Yang, B., Dai, M.: Image analysis by Gaussian–Hermite moments. Signal Process. 91(10), 2290 (2011)
Article
Google Scholar
Yap, P.T., Paramesran, R., Ong, S.H.: Krawtchouk moments as a new set of discrete orthogonal moments for image reconstruction. IEEE Trans. Image Process. 12(11), 1367 (2003)
MathSciNet
Article
Google Scholar
Liao, S.X., Chiang, A., Lu, Q., Pawlak, M.: Chinese character recognition via Gegenbauer moments. In: Proceedings of the 16th International Conference on Pattern Recognition ICPR’02, vol. 3 (IEEE Computer Society, 2002), vol. 3, pp. 485–488
Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920 (1980)
MathSciNet
Article
Google Scholar
Wallin, Å., Kübler, O.: Complete sets of complex Zernike moment invariants and the role of the pseudoinvariants. IEEE Trans. Pattern Anal. Mach. Intell. 17(11), 1106 (1995)
Article
Google Scholar
Sheng, Y., Duvernoy, J.: Circular-Fourier-radial–Mellin transform descriptors for pattern recognition. J. Opt. Soc. Am. A 3(6), 885 (1986)
Article
Google Scholar
Sheng, Y., Shen, L.: Orthogonal Fourier–Mellin moments for invariant pattern recognition. J. Opt. Soc. Am. A 11(6), 1748 (1994)
Article
Google Scholar
Ping, Z., Ren, H., Zou, J., Sheng, Y., Bo, W.: Generic orthogonal moments: Jacobi–Fourier moments for invariant image description. Pattern Recogn. 40(4), 1245 (2007)
Article
Google Scholar
Ping, Z., Wu, R., Sheng, Y.: Image description with Chebyshev–Fourier moments. J. Opt. Soc. Am. A 19(9), 1748 (2002)
MathSciNet
Article
Google Scholar
Yang, B., Flusser, J., Suk, T.: Design of high-order rotation invariants from Gaussian–Hermite moments. Signal Process. 113(1), 61 (2015)
Article
Google Scholar
Abu-Mostafa, Y.S., Psaltis, D.: Image normalization by complex moments. IEEE Trans. Pattern Anal. Mach. Intell. 7(1), 46 (1985)
Article
Google Scholar
Flusser, J., Suk, T.: Rotation moment invariants for recognition of symmetric objects. IEEE Trans. Image Process. 15(12), 3784 (2006)
MathSciNet
Article
Google Scholar