Skip to main content

Complete and Incomplete Sets of Invariants

Abstract

The paper shows that the moment invariants proposed recently in this journal by Hjouji et al. (J Math Imaging Vis 62:606–624, 2020) are incomplete, which leads to a limited discriminability. We prove this by means of circular projection of the image. In a broader context, we demonstrate that completeness of the invariants leads to a better recognition power.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. This statement is known as Moment Uniqueness Theorem, see [1] for more details.

  2. For some images, certain moments may be constrained to be zero or non-zero, so the choice may not be totally free.

References

  1. Flusser, J., Suk, T., Zitová, B.: 2D and 3D Image Analysis by Moments. Wiley, Chichester (2016)

    Book  Google Scholar 

  2. Flusser, J.: On the independence of rotation moment invariants. Pattern Recogn. 33(9), 1405 (2000)

    Article  Google Scholar 

  3. Flusser, J.: On the inverse problem of rotation moment invariants. Pattern Recogn. 35(12), 3015 (2002)

    Article  Google Scholar 

  4. Suk, T., Flusser, J.: Affine moment invariants generated by graph method. Pattern Recogn. 44(9), 2047 (2011)

    Article  Google Scholar 

  5. Hjouji, A., EL-Mekkaoui, J., Jourhmane, M., Bouikhalene, B.: New set of non-separable orthogonal invariant moments for image. J. Math. Imaging Vis. 62, 606–624 (2020)

    MathSciNet  Article  Google Scholar 

  6. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory 8(2), 179 (1962)

    Article  Google Scholar 

  7. Abu-Mostafa, Y.S., Psaltis, D.: Recognitive aspects of moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 698 (1984)

    Article  Google Scholar 

  8. Teh, C.H., Chin, R.T.: On image analysis by the method of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 496 (1988)

    Article  Google Scholar 

  9. Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357 (2001)

    MathSciNet  Article  Google Scholar 

  10. Yang, B., Li, G., Zhang, H., Dai, M.: Rotation and translation invariants of Gaussian–Hermite moments. Pattern Recogn. Lett. 32(2), 1283 (2011)

    Article  Google Scholar 

  11. Yang, B., Dai, M.: Image analysis by Gaussian–Hermite moments. Signal Process. 91(10), 2290 (2011)

    Article  Google Scholar 

  12. Yap, P.T., Paramesran, R., Ong, S.H.: Krawtchouk moments as a new set of discrete orthogonal moments for image reconstruction. IEEE Trans. Image Process. 12(11), 1367 (2003)

    MathSciNet  Article  Google Scholar 

  13. Liao, S.X., Chiang, A., Lu, Q., Pawlak, M.: Chinese character recognition via Gegenbauer moments. In: Proceedings of the 16th International Conference on Pattern Recognition ICPR’02, vol. 3 (IEEE Computer Society, 2002), vol. 3, pp. 485–488

  14. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920 (1980)

    MathSciNet  Article  Google Scholar 

  15. Wallin, Å., Kübler, O.: Complete sets of complex Zernike moment invariants and the role of the pseudoinvariants. IEEE Trans. Pattern Anal. Mach. Intell. 17(11), 1106 (1995)

    Article  Google Scholar 

  16. Sheng, Y., Duvernoy, J.: Circular-Fourier-radial–Mellin transform descriptors for pattern recognition. J. Opt. Soc. Am. A 3(6), 885 (1986)

    Article  Google Scholar 

  17. Sheng, Y., Shen, L.: Orthogonal Fourier–Mellin moments for invariant pattern recognition. J. Opt. Soc. Am. A 11(6), 1748 (1994)

    Article  Google Scholar 

  18. Ping, Z., Ren, H., Zou, J., Sheng, Y., Bo, W.: Generic orthogonal moments: Jacobi–Fourier moments for invariant image description. Pattern Recogn. 40(4), 1245 (2007)

    Article  Google Scholar 

  19. Ping, Z., Wu, R., Sheng, Y.: Image description with Chebyshev–Fourier moments. J. Opt. Soc. Am. A 19(9), 1748 (2002)

    MathSciNet  Article  Google Scholar 

  20. Yang, B., Flusser, J., Suk, T.: Design of high-order rotation invariants from Gaussian–Hermite moments. Signal Process. 113(1), 61 (2015)

    Article  Google Scholar 

  21. Abu-Mostafa, Y.S., Psaltis, D.: Image normalization by complex moments. IEEE Trans. Pattern Anal. Mach. Intell. 7(1), 46 (1985)

    Article  Google Scholar 

  22. Flusser, J., Suk, T.: Rotation moment invariants for recognition of symmetric objects. IEEE Trans. Image Process. 15(12), 3784 (2006)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Czech Science Foundation under the Grant No. GA21-03921S and by the Praemium Academiae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Flusser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flusser, J., Suk, T. & Zitová, B. Complete and Incomplete Sets of Invariants. J Math Imaging Vis 63, 917–922 (2021). https://doi.org/10.1007/s10851-021-01039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-021-01039-x

Keywords

  • Moment invariants
  • Complex moments
  • Completeness
  • Discriminability
  • Circular projection