Skip to main content
Log in

An Elastica-Driven Digital Curve Evolution Model for Image Segmentation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Geometric priors have been shown to be useful in image segmentation to regularize the results. For example, the classical Mumford–Shah functional uses region perimeter as prior. This has inspired much research in the last few decades, with classical approaches like the Rudin–Osher–Fatemi and most graph-cut formulations, which all use a weighted or binary perimeter prior. It has been observed that this prior is not suitable in many applications, for example for segmenting thin objects or some textures, which may have high perimeter/surface ratio. Mumford observed that an interesting prior for natural objects is the Euler elastical model, which involves the squared curvature. In other areas of science, researchers have noticed that some physical binarization processes, like emulsion unmixing, can be well-approximated by curvature-related flow like the Willmore flow. However, curvature-related flows are not easy to compute because curvature is difficult to estimate accurately, and the underlying optimization processes are not convex. In this article, we propose to formulate a digital flow that approximates an Elastica-related flow using a multigrid-convergent curvature estimator, within a discrete variational framework. We also present an application of this model as a post-processing step to a segmentation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://www.github.com/danoan/BTools

References

  1. Antunes, D., Lachaud, J.O., Talbot, H.: Digital curvature evolution model for image segmentation. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) Discrete Geometry for Computer Imagery, pp. 15–26. Springer, Cham (2019)

    Chapter  Google Scholar 

  2. Appleton, B., Talbot, H.: Globally optimal geodesic active contours. J. Math. Imaging Vis. 23(1), 67–86 (2005)

    Article  MathSciNet  Google Scholar 

  3. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001). https://doi.org/10.1109/83.935036

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobenko, A.I., Schröder, P.: Discrete willmore flow (2005)

  5. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1, pp. 105–112 (2001)

  6. Bredies, K., Pock, T., Wirth, B.: A convex, lower semicontinuous approximation of Euler’s elastica energy. SIAM J. Math. Anal. 47, 566–613 (2015). https://doi.org/10.1137/130939493

    Article  MathSciNet  MATH  Google Scholar 

  7. Bretin, E., Masnou, S., Oudet, E.: Phase-field approximations of the willmore functional and flow. Numer. Math. 131(1), 115–171 (2015)

    Article  MathSciNet  Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  Google Scholar 

  9. Chan, T.F., Kang, S.H., Kang, Shen J.: Euler’s elastica and curvature based inpaintings. J. SIAM J. Appl. Math 63, 564–592 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)

    Article  Google Scholar 

  11. Coeurjolly, D., Lachaud, J.O., Levallois, J.: Integral based curvature estimators in digital geometry. In: Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B. (eds.) Discrete Geometry for Computer Imagery, pp. 215–227. Springer, Berlin (2013)

    Chapter  Google Scholar 

  12. Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Multigrid Convergence of Discrete Geometric Estimators, pp. 395–424. Springer, Dordrecht (2012)

    MATH  Google Scholar 

  13. Deng, L.J., Glowinski, R., Tai, X.C.: A new operator splitting method for the Euler elastica model for image smoothing. SIAM J. Imaging Sci. 12(2), 1190–1230 (2019)

    Article  MathSciNet  Google Scholar 

  14. Droske, M., Rumpf, M.: A level set formulation for willmore flow. Interfaces Free Bound. 6(3), 361–378 (2004)

    Article  MathSciNet  Google Scholar 

  15. El-Zehiry, N.Y., Grady, L.: Fast global optimization of curvature. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3257–3264 (2010)

  16. El-Zehiry, N.Y., Grady, L.: Contrast driven Elastica for image segmentation. IEEE Trans. Image Process. 25(6), 2508–2518 (2016)

    Article  MathSciNet  Google Scholar 

  17. Esedoglu, S., Ruuth, S., Tsai, R.: Threshold dynamics for shape reconstruction and disocclusion. In: IEEE International Conference on Image Processing 2005, vol. 2, pp. II-502. IEEE (2005)

  18. Esedoglu, S., Ruuth, S.J., Tsai, R.: Threshold dynamics for high order geometric motions. Interfaces Free Bound. 10(3), 263–282 (2008)

    Article  MathSciNet  Google Scholar 

  19. Goldluecke, B., Cremers, D.: Introducing total curvature for image processing. In: 2011 International Conference on Computer Vision, pp. 1267–1274 (2011). https://doi.org/10.1109/ICCV.2011.6126378

  20. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  21. Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. J. Math. Imaging Vis. 13(3), 173–191 (2000)

    Article  MathSciNet  Google Scholar 

  22. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  23. Lachaud, J.O.: Non-Euclidean spaces and image analysis : Riemannian and discrete deformable models, discrete topology and geometry. Ph.D. thesis, Université Sciences et Technologies - Bordeaux I (2006). https://tel.archives-ouvertes.fr/tel-00396332

  24. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vis. Comput. 25(10), 1572–1587 (2007)

    Article  Google Scholar 

  25. Lim, P.H., Bagci, U., Bai, L.: Introducing willmore flow into level set segmentation of spinal vertebrae. IEEE Trans. Biomed. Eng. 60(1), 115–122 (2012)

    Article  Google Scholar 

  26. Malladi, R., Sethian, J.A.: Image processing via level set curvature flow. Proc. Nat. Acad. Sci. 92(15), 7046–7050 (1995)

    Article  MathSciNet  Google Scholar 

  27. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2) (1995)

  28. Manay, S., Hong, B.W., Yezzi, A.J., Soatto, S.: Integral invariant signatures. In: Pajdla, T., Matas, J. (eds.) Computer Vision - ECCV 2004, pp. 87–99. Springer, Berlin (2004)

    Chapter  Google Scholar 

  29. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

  30. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No. 98CB36269), vol. 3, pp. 259–263 (1998)

  31. Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and Its Applications, pp. 491–506. Springer, Berlin (1994)

  32. Nieuwenhuis, C., Toeppe, E., Gorelick, L., Veksler, O., Boykov, Y.: Efficient squared curvature. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4098–4105 (2014)

  33. Pottmann, H., Wallner, J., Huang, Q.X., Yang, Y.L.: Integral invariants for robust geometry processing. Comput. Aid. Geom. Des. 26(1), 37–60 (2009)

    Article  MathSciNet  Google Scholar 

  34. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  35. Rother, C., Kolmogorov, V., Lempitsky, V.S., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

  36. Roussillon, T., Lachaud, J.O.: Accurate curvature estimation along digital contours with maximal digital circular arcs. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) Combinatorial Image Analysis, pp. 43–55. Springer, Berlin (2011)

    Chapter  Google Scholar 

  37. Schindele, A., Massopust, P., Forster, B.: Multigrid convergence for the MDCA curvature estimator. J. Math. Imaging Vis. 57(3), 423–438 (2017)

    Article  MathSciNet  Google Scholar 

  38. Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: a linear programming relaxation. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 17–23 (2009)

  39. Schoenemann, T., Masnou, S., Cremers, D.: The elastic ratio: introducing curvature into ratio-based image segmentation. IEEE Trans. Image Process. 20(9), 2565–2581 (2011)

    Article  MathSciNet  Google Scholar 

  40. Strandmark, P., Kahl, F.: Curvature regularization for curves and surfaces in a global optimization framework. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 205–218. Springer, Berlin (2011)

    Google Scholar 

  41. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented lagrangian method. SIAM J. Img. Sci. 4(1), 313–344 (2011)

    Article  MathSciNet  Google Scholar 

  42. Zhu, W., Tai, X.C., Chan, T.: Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 57(2), 414–438 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Talbot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially funded by CoMeDiC ANR-15-CE40-0006 research grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, D., Lachaud, JO. & Talbot, H. An Elastica-Driven Digital Curve Evolution Model for Image Segmentation. J Math Imaging Vis 63, 1–17 (2021). https://doi.org/10.1007/s10851-020-00983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-020-00983-4

Keywords

Navigation