An Optimized Framework for Plane-Probing Algorithms

Abstract

A plane-probing algorithm computes the normal vector of a digital plane from a starting point and a predicate “Is a point \({x}\) in the digital plane?”. This predicate is used to probe the digital plane as locally as possible and decide on the fly the next points to consider. However, several existing plane-probing algorithms return the correct normal vector only for some specific starting points and an approximation otherwise, e.g., the H- and R-algorithm proposed in Lachaud et al. (J Math Imaging Vis 59(1):23–39, 2017). In this paper, we present a general framework for these plane-probing algorithms that provides a way of retrieving the correct normal vector from any starting point, while keeping their main features. There are \(O(\omega \log \omega )\) calls to the predicate in the worst-case scenario, where \(\omega \) is the thickness of the underlying digital plane, but far fewer calls are experimentally observed on average. In the context of digital surface analysis, the resulting algorithm is expected to be of great interest for normal estimation and shape reconstruction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Bonneel, N., Coeurjolly, D., Gueth, P., Lachaud, J.O.: Mumford-shah mesh processing using the Ambrosio–Tortorelli functional. In: Computer Graphics Forum, vol. 37, pp. 75–85. Wiley Online Library (2018)

  2. 2.

    Boulch, A., Marlet, R.: Fast and robust normal estimation for point clouds with sharp features. In: Computer graphics forum, vol. 31, pp. 1765–1774. Wiley Online Library (2012)

  3. 3.

    Boulch, A., Marlet, R.: Deep learning for robust normal estimation in unstructured point clouds. In: Computer Graphics Forum, vol. 35, pp. 281–290. Wiley Online Library (2016)

  4. 4.

    Buzer, L.: A linear incremental algorithm for naive and standard digital lines and planes recognition. Graph. Models 65(1–3), 61–76 (2003). https://doi.org/10.1016/S1524-0703(03)00008-0

    Article  MATH  Google Scholar 

  5. 5.

    Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm for digital plane recognition. In: Discrete Geometry for Computer Imagery (DGCI’2008), LNCS, vol. 4992, pp. 346–357. Springer (2008)

  6. 6.

    Charrier, E., Lachaud, J.O.: Maximal planes and multiscale tangential cover of 3D digital objects. In: Proceedings of the International Workshop Combinatorial Image Analysis (IWCIA’2011), Lecture Notes in Computer Science, vol. 6636, pp. 132–143. Springer, Berlin/Heidelberg (2011)

  7. 7.

    Chica, A., Williams, J., Andújar, C., Brunet, P., Navazo, I., Rossignac, J., Vinacua, À.: Pressing: smooth isosurfaces with flats from binary grids. In: Computer Graphics Forum, vol. 27, pp. 36–46. Wiley Online Library (2008)

  8. 8.

    Coeurjolly, D., Foare, M., Gueth, P., Lachaud, J.O.: Piecewise smooth reconstruction of normal vector field on digital data. In: Computer Graphics Forum, vol. 35, pp. 157–167. Wiley Online Library (2016)

  9. 9.

    Coeurjolly, D., Lachaud, J.O., Levallois, J.: Multigrid convergent principal curvature estimators in digital geometry. Comput. Vis. Image Underst. 129, 27–41 (2014)

    Article  Google Scholar 

  10. 10.

    Cuel, L., Lachaud, J.O., Mérigot, Q., Thibert, B.: Robust geometry estimation using the generalized voronoi covariance measure. SIAM J. Imaging Sci. 8(2), 1293–1314 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Cuel, L., Lachaud, J.O., Thibert, B.: Voronoi-based geometry estimator for 3d digital surfaces. In: E. Barcucci, A. Frosini, S. Rinaldi (eds.) Proceedings of the International Conference on Discrete Geometry for Computer Imagery (DGCI’2014), Sienna, Italy, Lecture Notes in Computer Science, vol. 8668, pp. 134–149. Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-09955-2_12

  12. 12.

    Debled-Rennesson, I., Reveillès, J.: An incremental algorithm for digital plane recognition. In: Proceedings of the Discrete Geometry for Computer Imagery, pp. 194–205 (1994)

  13. 13.

    Dey, T.K., Goswami, S.: Tight cocone: a water-tight surface reconstructor. In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, pp. 127–134. ACM (2003)

  14. 14.

    Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recognit. 42(10), 2229–2238 (2009)

    Article  Google Scholar 

  15. 15.

    Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. In: ACM Transactions on Graphics (TOG), vol. 22, pp. 950–953. ACM (2003)

  16. 16.

    Fourey, S., Malgouyres, R.: Normals estimation for digital surfaces based on convolutions. Comput. Graph. 33(1), 2–10 (2009)

    Article  Google Scholar 

  17. 17.

    Françon, J., Papier, L.: Polyhedrization of the boundary of a voxel object. In: International Conference on Discrete Geometry for Computer Imagery, pp. 425–434. Springer (1999)

  18. 18.

    Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discrete Appl. Math. 151(1), 169–183 (2005)

    MathSciNet  Article  Google Scholar 

  19. 19.

    He, L., Schaefer, S.: Mesh denoising via l 0 minimization. ACM Trans. Graph. (TOG) 32(4), 64 (2013)

    MATH  Google Scholar 

  20. 20.

    Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Proceedings of the Visual Form 2001, LNCS, vol. 2059, pp. 356–366. Springer (2001)

  21. 21.

    Lachaud, J.O., Coeurjolly, D., Levallois, J.: Robust and convergent curvature and normal estimators with digital integral invariants. In: Najman, L., Romon, P. (eds.) Modern Approaches to Discrete Curvature. Lecture Notes in Mathematics, vol. 2184, pp. 293–348. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-58002-9_9

    Chapter  MATH  Google Scholar 

  22. 22.

    Lachaud, J.O., Provençal, X., Roussillon, T.: An output-sensitive algorithm to compute the normal vector of a digital plane. J. Theor. Comput. Sci. (TCS) 624, 73–88 (2016). https://doi.org/10.1016/j.tcs.2015.11.021

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Lachaud, J.O., Provençal, X., Roussillon, T.: Computation of the normal vector to a digital plane by sampling significant points. In: 19th IAPR International Conference on Discrete Geometry for Computer Imagery. Nantes, France (2016). https://hal.archives-ouvertes.fr/hal-01621492. Accessed on 1 July 2019

  24. 24.

    Lachaud, J.O., Provençal, X., Roussillon, T.: Two plane-probing algorithms for the computation of the normal vector to a digital plane. J. Math. Imaging Vis. 59(1), 23–39 (2017). https://doi.org/10.1007/s10851-017-0704-x

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Lachaud, J.O., Thibert, B.: Properties of gauss digitized shapes and digital surface integration. J. Math. Imaging Vis. 54(2), 162–180 (2016)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Mérigot, Q., Ovsjanikov, M., Guibas, L.J.: Voronoi-based curvature and feature estimation from point clouds. IEEE Trans. Vis. Comput. Graph. 17(6), 743–756 (2010)

    Article  Google Scholar 

  27. 27.

    Mesmoudi, M.M.: A simplified recognition algorithm of digital planes pieces. In: Proceedings of the Discrete Geometry for Computer Imagery, pp. 404–416 (2002)

  28. 28.

    Provot, L., Debled-Rennesson, I.: 3D noisy discrete objects: segmentation and application to smoothing. Pattern Recognit. 42(8), 1626–1636 (2009)

    Article  Google Scholar 

  29. 29.

    Reveillès, J.P.: Géométrie discrète, calculs en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur (1991)

  30. 30.

    Roussillon, T., Lachaud, J.O.: Digital plane recognition with fewer probes. In: M. Couprie, J. Cousty, Y. Kenmochi and N. Mustafa (eds) 21st IAPR International Conference on Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science, vol. 11414, pp. 380–393. Springer, Cham, Marne-la-Vallée, France (2019). https://doi.org/10.1007/978-3-030-14085-4_30. https://hal.archives-ouvertes.fr/hal-02087529

  31. 31.

    Sivignon, I., Dupont, F., Chassery, J.M.: Decomposition of a three-dimensional discrete object surface into discrete plane pieces. Algorithmica 38(1), 25–43 (2004)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 647–652 (1994)

    Article  Google Scholar 

  33. 33.

    Veelaert, P.: Fast combinatorial algorithm for tightly separating hyperplanes. In: Proceedings of the International Workshop Combinatorial Image Analysis (IWCIA’2012), pp. 31–44 (2012)

  34. 34.

    Zhang, W., Deng, B., Zhang, J., Bouaziz, S., Liu, L.: Guided mesh normal filtering. In: Computer Graphics Forum, vol. 34, pp. 23–34. Wiley Online Library (2015)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tristan Roussillon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partly funded by CoMeDiC ANR-15-CE40-0006 and PARADIS ANR-18-CE23-0007-01 research grants.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lachaud, JO., Meyron, J. & Roussillon, T. An Optimized Framework for Plane-Probing Algorithms. J Math Imaging Vis 62, 718–736 (2020). https://doi.org/10.1007/s10851-020-00965-6

Download citation

Keywords

  • Digital plane recognition
  • Normal estimation
  • Plane-probing algorithm