Abstract
We propose a novel two-stage method for the classification of hyperspectral images. Pixel-wise classifiers, such as the classical support vector machine (SVM), consider spectral information only. As spatial information is not utilized, the classification results are not optimal and the classified image may appear noisy. Many existing methods, such as morphological profiles, superpixel segmentation, and composite kernels, exploit the spatial information. In this paper, we propose a two-stage approach inspired by image denoising and segmentation to incorporate the spatial information. In the first stage, SVMs are used to estimate the class probability for each pixel. In the second stage, a convex variant of the Mumford–Shah model is applied to each probability map to denoise and segment the image into different classes. Our proposed method effectively utilizes both spectral and spatial information of the data sets and is fast as only convex minimization is needed in addition to the SVMs. Experimental results on three widely utilized real hyperspectral data sets indicate that our method is very competitive in accuracy, timing, and the number of parameters when compared with current state-of-the-art methods, especially when the inter-class spectra are similar or the percentage of training pixels is reasonably high.
This is a preview of subscription content, access via your institution.







References
Patel, N., Patnaik, C., Dutta, S., Shekh, A., Dave, A.: Study of crop growth parameters using airborne imaging spectrometer data. Int. J. Remote Sens. 22(12), 2401–2411 (2001)
Datt, B., McVicar, T.R., Van Niel, T.G., Jupp, D.L., Pearlman, J.S.: Preprocessing EO-1 hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans. Geosci. Remote Sens. 41(6), 1246–1259 (2003)
Trierscheid, M., Pellenz, J., Paulus, D., Balthasar, D.: Hyperspectral imaging or victim detection with rescue robots. In: IEEE International Workshop on Safety, Security and Rescue Robotics, 2008. SSRR 2008, pp. 7–12. IEEE (2008)
Eismann, M.T., Stocker, A.D., Nasrabadi, N.M.: Automated hyperspectral cueing for civilian search and rescue. Proc. IEEE 97(6), 1031–1055 (2009)
Lu, R., Chen, Y.-R.: Hyperspectral imaging for safety inspection of food and agricultural products. In: Pathogen Detection and Remediation for Safe Eating, vol. 3544, pp. 121–134. International Society for Optics and Photonics (1999)
Gowen, A., O’Donnell, C., Cullen, P., Downey, G., Frias, J.: Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18(12), 590–598 (2007)
Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 19(1), 29–43 (2002)
Stein, D.W., Beaven, S.G., Hoff, L.E., Winter, E.M., Schaum, A.P., Stocker, A.D.: Anomaly detection from hyperspectral imagery. IEEE Signal Process. Mag. 19(1), 58–69 (2002)
Hörig, B., Kühn, F., Oschütz, F., Lehmann, F.: Hymap hyperspectral remote sensing to detect hydrocarbons. Int. J. Remote Sens. 22(8), 1413–1422 (2001)
Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66(3), 247–259 (2011)
Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)
Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)
Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Trans. Geosci. Remote Sens. 50(3), 809–823 (2012)
Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Trans. Geosci. Remote Sens. 10(2), 318–322 (2013)
Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)
Yue, J., Zhao, W., Mao, S., Liu, H.: Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 6(6), 468–477 (2015)
Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: 2015 IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), pp. 4959–4962. IEEE (2015)
Morchhale, S., Pauca, V.P., Plemmons, R.J., Torgersen, T.C.: Classification of pixel-level fused hyperspectral and LiDAR data using deep convolutional neural networks. In: 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–5 (2016)
Pan, B., Shi, Z., Xu, X.: R-vcanet: a new deep-learning-based hyperspectral image classification method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(5), 1975–1986 (2017)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)
Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)
Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)
Camps-Valls, G., Gomez-Chova, L., Muñoz-Marí, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3(1), 93–97 (2006)
Fang, L., Li, S., Duan, W., Ren, J., Benediktsson, J.A.: Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 53(12), 6663–6674 (2015)
Tarabalka, Y., Benediktsson, J.A., Chanussot, J.: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 47(8), 2973–2987 (2009)
Kang, X., Li, S., Benediktsson, J.A.: Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52(5), 2666–2677 (2014)
Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: Svm-and mrf-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010)
Ghamisi, P., Benediktsson, J.A., Ulfarsson, M.O.: Spectral-spatial classification of hyperspectral images based on hidden markov random fields. IEEE Trans. Geosci. Remote Sens. 52(5), 2565–2574 (2014)
Liu, T., Gu, Y., Chanussot, J., Mura, M Dalla: Multimorphological superpixel model for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(12), 6950–6963 (2017)
Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)
Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)
Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)
Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231 (2013)
Fang, L., Li, S., Kang, X., Benediktsson, J.A.: Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 52(12), 7738–7749 (2014)
Fang, L., Li, S., Kang, X., Benediktsson, J.A.: Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model. IEEE Trans. Geosci. Remote Sens. 53(8), 4186–4201 (2015)
Fang, L., Wang, C., Li, S., Benediktsson, J.A.: Hyperspectral image classification via multiple-feature-based adaptive sparse representation. IEEE Trans. Instrum. Meas. 66(7), 1646–1657 (2017)
Li, S., Lu, T., Fang, L., Jia, X., Benediktsson, J.A.: Probabilistic fusion of pixel-level and superpixel-level hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 54(12), 7416–7430 (2016)
Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 17, pp. 137–154, San Francisco (1985)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)
Morar, A., Moldoveanu, F., Gröller, E.: Image segmentation based on active contours without edges. In: 2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing, pp. 213–220. IEEE (2012)
Cai, X., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the mumford-shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)
Chan, R., Yang, H., Zeng, T.: A two-stage image segmentation method for blurry images with poisson or multiplicative gamma noise. SIAM J. Imaging Sci. 7(1), 98–127 (2014)
Cai, X., Chan, R., Nikolova, M., Zeng, T.: A three-stage approach for segmenting degraded color images: smoothing, lifting and thresholding (SLaT). J. Sci. Comput. 72(3), 1313–1332 (2017)
Pontil, M., Verri, A.: Support vector machines for 3d object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 20(6), 637–646 (1998)
El-Naqa, I., Yang, Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.M.: A support vector machine approach for detection of microcalcifications. IEEE Trans. Med. Imaging 21(12), 1552–1563 (2002)
Osuna, E., Freund, R., Girosit, F.: Training support vector machines: an application to face detection. In: 1997 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 130–136. IEEE (1997)
Tay, F.E., Cao, L.: Application of support vector machines in financial time series forecasting. Omega 29(4), 309–317 (2001)
Kim, K.-J.: Financial time series forecasting using support vector machines. Neurocomputing 55(1), 307–319 (2003)
Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenomena 60(1–4), 259–268 (1992)
Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and Its Applications, pp. 491–506. Springer (1994)
Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)
Shen, J., Kang, S.H., Chan, T.F.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2003)
Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Cai, X., Steidl, G.: Multiclass segmentation by iterated rof thresholding. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 237–250. Springer (2013)
Chan, R.H., Ho, C.-W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)
Hwang, H., Haddad, R.A.: Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4(4), 499–502 (1995)
Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)
Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)
Lin, H.-T., Lin, C.-J., Weng, R.C.: A note on platt’s probabilistic outputs for support vector machines. Mach. Learn. 68(3), 267–276 (2007)
Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5(Aug), 975–1005 (2004)
Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
Zhao, X.-L., Wang, F., Huang, T.-Z., Ng, M.K., Plemmons, R.J.: Deblurring and sparse unmixing for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 51(7), 4045–4058 (2013)
Gonzales, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading, MA (1992)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)
Chan, R.H.-F., Jin, X.-Q.: An Introduction to Iterative Toeplitz Solvers, vol. 5. SIAM, Philadelphia (2007)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)
Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai, Montreal, vol. 14, pp. 1137–1145 (1995)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)
Liao, H., Li, F., Ng, M.K.: Selection of regularization parameter in total variation image restoration. JOSA A 26(11), 2311–2320 (2009)
Dong, Y., Hintermüller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)
Wen, Y.-W., Chan, R.H.: Parameter selection for total-variation-based image restoration using discrepancy principle. IEEE Trans. Image Process. 21(4), 1770–1781 (2012)
Bredies, K., Dong, Y., Hintermüller, M.: Spatially dependent regularization parameter selection in total generalized variation models for image restoration. Int. J. Comput. Math. 90(1), 109–123 (2013)
Gader, P., Zare, A., Close, R., Aitken, J., Tuell, G.: Muufl gulfport hyperspectral and LiDAR airborne data set. Univ. Florida, Gainesville, FL, Tech. Rep. REP-2013-570 (2013)
Debes, C., Merentitis, A., Heremans, R., Hahn, J., Frangiadakis, N., van Kasteren, T., Liao, W., Bellens, R., Pižurica, A., Gautama, S., et al.: Hyperspectral and LiDAR data fusion: outcome of the 2013 grss data fusion contest. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 7(6), 2405–2418 (2014)
Acknowledgements
The authors would like to thank the Computational Intelligence Group from the Basque University for sharing the hyperspectral data sets in their website (http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes), Prof. Leyuan Fang from College of Electrical and Information Engineering at Hunan University for providing the programs of the SC-MK and MFASR methods in his homepage (http://www.escience.cn/people/LeyuanFang) and Prof. Xudong Kang from College of Electrical and Information Engineering at Hunan University for providing the program of the EPF method in his homepage (http://xudongkang.weebly.com/). Raymond H. Chan’s research is supported by HKRGC Grants No. CUHK14306316, CityU Grant: 9380101, CRF Grant C1007-15G, AoE/M-05/12. Kelvin K. Kan’s research is supported by US Air Force Office of Scientific Research under grant FA9550-15-1-0286. Mila Nikolova’s research is supported by the French Research Agency (ANR) under grant No ANR-14-CE27-001 (MIRIAM) and by the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme Variational Methods and Effective Algorithms for Imaging and Vision, EPSRC grant no EP/K032208/1. Robert J. Plemmons’ research is supported by HKRGC Grant No. CUHK14306316 and US Air Force Office of Scientific Research under grant FA9550-15-1-0286.
Author information
Authors and Affiliations
Corresponding author
Additional information
In memory of Mila Nikolova.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chan, R.H., Kan, K.K., Nikolova, M. et al. A two-stage method for spectral–spatial classification of hyperspectral images. J Math Imaging Vis 62, 790–807 (2020). https://doi.org/10.1007/s10851-019-00925-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-019-00925-9
Keywords
- Hyperspectral image classification
- Image segmentation
- Image denoising
- Mumford–Shah model
- Support vector machine
- Alternating direction method of multipliers