Skip to main content
Log in

An Inverse Source Problem Connected with Thermoacoustic Imaging in Multi-layer Planar Medium

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We derived analytical forward and inverse solution of thermoacoustic wave equation for nonhomogeneous medium. We modelled the nonhomogeneous medium as a multi-layer planar medium and defined initial conditions, continuity conditions on the layer boundaries and radiation conditions at infinity assuming the source distribution existing in all layers. These solutions of thermoacoustic wave equation are based on the method of Green’s functions for layered planar media. For qualitative testing and comparison of the point-spread functions associated with the homogeneous and layered solutions, we performed numerical simulations. Our simulation results showed that the conventional inverse solution based on homogeneous medium assumption, as expected, produced incorrect locations of point sources, whereas our inverse solution involving the multi-layer planar medium produced point sources at the correct source locations. Also, we examined whether the performance of our layered inverse solution is sensitive to medium parameters used as priority information in the measured data. Our inverse solutions based on multi-layer planar media are applicable for cross-sectional two-dimensional imaging of abdominal structure and the organs such as breast and skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl. 23(5), 2089–2102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beard, P.: Review: Biomedical photoacoustic imaging. Interface Focus 1(4), 602–631 (2011). https://doi.org/10.1098/rsfs.2011.0028

    Article  Google Scholar 

  3. Bukhgeim, A.L., Kardakov, V.B.: Solution of an inverse problem for an elastic wave equation by the method of spherical means. Sib. Math J. 19(4), 749–758 (1978)

    MathSciNet  Google Scholar 

  4. Caorsi, S., Frattoni, A., Gragnani, G.L., Nortino, E., Pastorino, M.: Numerical algorithm for dielectric-permittivity microwave imaging of inhomogeneous biological bodies. Med. Biol. Eng. Comput. 29, 37–44 (1991)

    Article  Google Scholar 

  5. Chaudhary, S., Mishra, R., Swarup, A., Thomas, J.: Dielectric properties of normal human breast tissues at radiowave and microwave frequencies. Indian J. Biochem. Biophys. 21, 76–79 (1984)

    Google Scholar 

  6. Cox, B.T., Treeby, B.E.: Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media. IEEE Trans. Med. Imaging 29(2), 387–396 (2010)

    Article  Google Scholar 

  7. Esenaliev, R.O., Karabutov, A.A., Tittel, F.K., Fornage, B.D., Thomsen, S.L., Stelling, C., Oraevsky, A.A.: Laser optoacoustic imaging for breast cancer diagnostics: limit of detection and comparison with X-ray and ultrasound imaging. Proc. SPIE 2979, 71–82 (1997)

    Article  Google Scholar 

  8. Finch, D.: Rakesh: The spherical mean value operator with centers on a sphere. Inverse Probl. 23(6), S37–S50 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabriel, C., Sheppard, R.J., Grant, E.H.: The dielectric properties of biological tissues. Phys. Med. Biol. 41, 2271 (1996)

    Article  Google Scholar 

  10. Haberman, R.: Elementary Applied Partial Differential Equations, pp. 277–404. Prentice Hall, Englewood Cliffs (1987)

    Google Scholar 

  11. Hawley, M.S., Broquetas, A., Jofre, L., Bolomey, J.C., Gaboriaud, G.: Microwave imaging of tissue blood content changes. J. Biomed. Eng. 13, 197–202 (1991)

    Article  Google Scholar 

  12. Haltmeier, M.: Universal inversion formulas for recovering a function from spherical means. SIAM J. Math. Anal. 46(1), 214–232 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hristova, Y., Kuchment, P., Nguyen, L.: Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Probl. 24(5), 055006 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsiung, C.Y., Mao, G.Y.: Linear Algebra, pp. 30–272. World Scientific, Singapore (1998)

    Book  Google Scholar 

  15. Joines, W., Jirtle, R., Rafal, M., Schaeffer, D.: Microwave power absorption differences between normal and malignant tissue. Radiat. Oncol. Biol. Phys. 6, 681–687 (1980)

    Article  Google Scholar 

  16. Joines, W., Zhang, Y., Li, C., Jirtle, R.: The measured electrical properties of normal and malignant human tissues from 50–900 MHz. Med. Phys. 21, 547–550 (1994)

    Article  Google Scholar 

  17. Kruger, A.R., Kiser William, L., Miller, K.D., Reynolds, H.E.: Thermoacoustic CT: imaging principles. Proc. SPIE Biomed. Optoacoust. 3916, 150–159 (2000)

    Article  Google Scholar 

  18. Kruger, A.R., Miller, K.D., Reynolds, H.E., Kiser, W.L., Reinecke, D.R., Kruger, G.A.: Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study. Radiology 216, 279–283 (2000)

    Article  Google Scholar 

  19. Kuchment, P., Kunyansky, L.: Mathematics of photoacoustic and thermoacoustic tomography. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, vol. 2, pp. 817–866. Springer, Berlin (2010)

    Google Scholar 

  20. Larsen, L.E., Jacobi, J.H.: Medical Applications of Microwave Imaging. IEEE Press, Hoboken (1986)

    Google Scholar 

  21. Li, C., Wang, L.V.: Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54(19), R59–97 (2009)

    Article  Google Scholar 

  22. Maslov, K., Wang, L.V., Yao, D.K., Zang, C.: Photoacoustic measurement of the Grüneisen parameter tissue. J. Biomed. Opt. 19(1), 017007 (2014). 1-6

    Article  Google Scholar 

  23. Meaney, P.M., Paulsen, K.D., Chang, J.T.: Near-field microwave imaging of biologically-based materials using a monopole transceiver system. IEEE Trans. Microw. Theory Tech. 46, 31–45 (1998)

    Article  Google Scholar 

  24. Morse, P.M., Uno Ingard, K.: The radiation of sound and the scattering of sound. In: Theoretical Acoustics, pp. 306–441. McGraw-Hill, New York (1968)

  25. Narayanan, E.K., Rakesh: Spherical means with centers on a hyperplane in even dimensions (2010). arXiv:0911.4582v2 [math.AP]

  26. Nessibi, M.M., Rachdi, L.T., Trimeche, K.: Ranges and inversion formulas for spherical mean operator and its dual. J. Math. Anal. Appl. 196(3), 861884 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oraevsky, A.A., Andreev, A.A., Karabutor, A.A., Declan Fleming, K.R., Gatalica, Z., Singh, H., Esenalier, R.O.: Laser optoacoustic imaging of the breast: detection of cancer angiogenesis. Proc. SPIE 3597, 352–363 (1999). https://doi.org/10.1117/12.356829

    Article  Google Scholar 

  28. Qian, J., Stefanov, P., Uhlmann, G., Zhao, H.: A new numerical algorithm for thermoacoustic and photoacoustic tomography with variable sound speed. Technical report 10-81, Dept of Computer Science and Applied Mathematics, University of California, Los Angeles (2010)

  29. Stakgold, I., Holst, M.J.: Green’s Function and Boundary Value Problems, pp. 51–216. Wiley, New Jersey (2011)

  30. Schoonover, R.W., Anastasio, M.: Image reconstruction in photoacoustic tomography involving layered acoustic media. J. Opt. Soc. Am. 28(6), 1114–1120 (2011)

    Article  Google Scholar 

  31. Stefanov, P., Uhlmann, G.: Thermoacoustic tomography with variable sound speed. Inverse Probl. 25(7), 075011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, Y., Feng, D., Wang, L.V.: Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry. IEEE Trans. Med. Imaging 21(7), 823–828 (2002)

    Article  Google Scholar 

  33. Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4), 041101-22 (2006)

    Article  Google Scholar 

  34. Wang, L.V., Wu, H.: Photoacoustic Tomography. Biomedical Optics Principles and Imaging, pp. 283–316. Wiley, London (2007)

    Google Scholar 

  35. Wang, L.V., Xu, M.: Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71(1–7), 016706 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by TUBITAK of Turkey through ARDEB-1003 Program under Grant 213E038. We are immensely grateful to Prof. Dr. Mustafa Karaman who provided insight and expertise that assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banu Uzun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, B., Yücel, H. An Inverse Source Problem Connected with Thermoacoustic Imaging in Multi-layer Planar Medium. J Math Imaging Vis 61, 874–884 (2019). https://doi.org/10.1007/s10851-019-00875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00875-2

Keywords

Navigation