Advertisement

Journal of Mathematical Imaging and Vision

, Volume 61, Issue 4, pp 432–442 | Cite as

Multi-scale Arithmetization of Linear Transformations

  • Loïc MazoEmail author
Article
  • 177 Downloads

Abstract

A constructive nonstandard interpretation of a multiscale affine transformation scheme is presented. It is based on the \(\Omega \)-numbers of Laugwitz and Schmieden and on the discrete model of the real line of Reeb and Harthong. In this setting, the nonstandard version of the Euclidean affine transformation gives rise to a sequence of quasi-linear transformations over integer spaces, allowing integer-only computations.

Keywords

Affine transformation Discretization Multigrid convergence Digital geometry Nonstandard analysis Constructive mathematics 

Notes

References

  1. 1.
    Blot, V., Cœurjolly, D.: Quasi-affine transformation in higher dimension. In: DGCI, LNCS, vol. 5810, pp. 493–504 (2009).  https://doi.org/10.1007/978-3-642-04397-0_42
  2. 2.
    Chollet, A.: Non classical formalisms for the computing treatment of the topology and the discrete geometry. Ph.D. thesis, Université de La Rochelle. https://tel.archives-ouvertes.fr/tel-00579781 (2010). Accessed 16 Oct 2018
  3. 3.
    Chollet, A., Wallet, G., Andres, E., Fuchs, L., Largeteau-Skapin, G., Richard, A.: Omega-arithmetization of ellipses. In: CompIMAGE, pp. 24–35 (2010).  https://doi.org/10.1007/978-3-642-12712-0_3
  4. 4.
    Chollet, A., Wallet, G., Fuchs, L., Andres, A., Largeteau-Skapin, G.: Omega-arithmetization: A discrete multi-resolution representation of real functions. In: IWCIA, pp. 316–329 (2009).  https://doi.org/10.1007/978-3-642-10210-3_25
  5. 5.
    Chollet, A., Wallet, G., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Foundational aspects of multiscale digitization. Theor. Comput. Sci. 466, 2–19 (2012).  https://doi.org/10.1016/j.tcs.2012.07.026 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Insight in discrete geometry and computational content of a discrete model of the continuum. Pattern Recognit. 42(10), 2220–2228 (2009).  https://doi.org/10.1016/j.patcog.2008.12.005 CrossRefzbMATHGoogle Scholar
  7. 7.
    Coeurjolly, D., Blot, V., Jacob-Da Col, M.A.: Quasi-affine transformation in 3-d: theory and algorithms. In: IWCIA, LNCS, vol 5852, pp. 68–81 (2009).  https://doi.org/10.1007/978-3-642-10210-3_6
  8. 8.
    Diener, F., Reeb, G.: Analyse Non Standard. Hermann, Paris (1989)zbMATHGoogle Scholar
  9. 9.
    Fuchs, L., Largeteau-Skapin, G., Wallet, G., Andres, E., Chollet, A.: A first look into a formal and constructive approach for discrete geometry using nonstandard analysis. In: DGCI, LNCS, pp. 21–32 (2008).  https://doi.org/10.1007/978-3-540-79126-3_4
  10. 10.
    Harthong, J.: Une théorie du continu. In: Les mathématiques non standard, pp. 307–329 (1989)Google Scholar
  11. 11.
    Jacob, M.A.: Applications quasi-affines. Ph.D. thesis, Université Louis Pasteur, Strasbourg (1993)Google Scholar
  12. 12.
    Jacob-Da Col, M.A.: Applications quasi-affines et pavages du plan discret. Theor. Comput. Sci. 259(1–2), 245–269 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jacob-Da Col, M.A., Mazo, L.: nD quasi-affine transformations. In: DGCI, LNCS, pp. 337–348 (2016).  https://doi.org/10.1007/978-3-319-32360-2_26
  14. 14.
    Jacob-Da Col, M.A., Reveillès, J.P.: Gaussian numeration systems. In: DGCI, LNCS, pp. 37–47 (1995). https://dpt-info.u-strasbg.fr/~jacob
  15. 15.
    Jacob-Da Col, M.A., Tellier, P.: Quasi-linear transformations and discrete tilings. Theor. Comput. Sci. 410(21), 2126–2134 (2009).  https://doi.org/10.1016/j.tcs.2009.01.032 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Laugwitz, D.: \(\Omega \)-calculus as a generalization of field extension: An alternative approach to nonstandard analysis. In: Nonstandard Analysis-Recent Developments, LNM, pp. 120–133. Springer (1983)Google Scholar
  17. 17.
    Magaud, N., Chollet, A., Fuchs, L.: Formalizing a discrete model of the continuum in coq from a discrete geometry perspective. Ann. Math. Artif. Intell. 74(3–4), 309–332 (2015).  https://doi.org/10.1007/s10472-014-9434-6 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nehlig, P.: Applications quasi-affines: pavages par images réciproques. Theor. Comput. Sci. 156(1&2), 1–38 (1996).  https://doi.org/10.1016/0304-3975(95)00040-2 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Ph.D. thesis, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  20. 20.
    Reveillès, J.P., Richard, D.: Back and forth between continuous and discrete for the working computer scientist. Ann. Math. Artif. Intell. 16(1), 89–152 (1996).  https://doi.org/10.1007/BF02127796 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schmieden, C., Laugwitz, D.: Eine erweiterung der infinitesimalrechnung. Math. Z. 69, 1–39 (1958)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICube, CNRSUniversity of StrasbourgIllkirchFrance

Personalised recommendations