Skip to main content
Log in

Tomographic Image Reconstruction with a Spatially Varying Gamma Mixture Prior

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A spatially varying Gamma mixture model prior is employed for tomographic image reconstruction, ensuring effective noise elimination and the preservation of region boundaries. We define a line process, modeling edges between image segments, through appropriate Markov random field smoothness terms which are based on the Student’s t-distribution. The proposed algorithm consists of two alternating steps. In the first step, the mixture model parameters are automatically estimated from the image. In the second step, the reconstructed image is estimated by optimizing the maximum-a-posteriori criterion using the one-step-late expectation–maximization and preconditioned conjugate gradient algorithms. Numerical experiments on various photon-limited image scenarios show that the proposed model outperforms the compared state-of-the-art reconstruction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahmadi, S., Rajabi, H., Sardari, D., Babapour, F., Rahmatpour, M.: Attenuation correction in SPECT during image reconstruction using inverse Monte Carlo method a simulation study. Rom. Rep. Phys. 66, 200–211 (2014)

    Google Scholar 

  2. Arcadu, F., Nilchian, M., Studer, A., Stampanoni, M., Marone, F.: A forward regridding method with minimal oversampling for accurate and efficient iterative tomographic algorithms. IEEE Trans. Image Process. 25(3), 1207–1218 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Brendel, B., Teuffenbach, M., No, P.B., Pfeiffer, F., Koehler, T.: Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography. Med. Phys. 43(1), 188–194 (2016)

    Article  Google Scholar 

  5. Browne, J.A., Pierro, A.R.D.: A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans. Med. Imaging 15, 687–699 (1996)

    Article  Google Scholar 

  6. Burger, M., Osher, S.: A guide to the TV zoo. In: Level Set and PDE Based Reconstruction Methods in Imaging, pp. 1–70. Springer (2013)

  7. Chen, Y., Ma, J., Feng, Q., Luo, L., Shi, P., Chen, W.: Nonlocal prior Bayesian tomographic reconstruction. J. Math. Imaging Vis. 30, 133–146 (2008)

    Article  Google Scholar 

  8. Estellers, V., Soatto, S.: Detecting occlusions as an inverse problem. J. Math. Imaging Vis. 54(2), 181–198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garrigos, G., Rosasco, L., Villa, S.: Iterative regularization via dual diagonal descent. J. Math. Imaging and Vis.(2017)

  10. Golub, G.H., Hansen, P.C., O’Leary, D.P.: Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goris, B., Van den Broek, W., Batenburg, K.J., Mezerji, H.H., Bals, S.: Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120–130 (2012)

    Article  Google Scholar 

  12. Green, P.J.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9(1), 84–93 (1990)

    Article  Google Scholar 

  13. Higdon, D.M., Bowsher, J.E., Johnson, V.E., Turkington, T.G., Gilland, D.R., Jaczszak, R.J.: Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data. IEEE Trans. Med. Imaging 16(5), 516–526 (1997)

    Article  Google Scholar 

  14. Hm, H.M.H., Larkin, B.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–9 (1994)

    Article  Google Scholar 

  15. Hsiao, I.T., Rangarajan, A., Gindi, G.: Joint MAP Bayesian tomographic reconstruction with a Gamma-mixture prior. IEEE Trans. Med. Imaging 11(12), 1466–1475 (2002)

    Article  Google Scholar 

  16. Idier, J.: Bayesian Approach to Inverse Problems. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  17. Kim, D., Ramani, S., Fessler, J.A.: Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction. IEEE Trans. Med. Imaging 34(1), 167–178 (2015)

    Article  Google Scholar 

  18. Kotz, S., Balakrishnan, N., Johnson, N.: Continuous Multivariate Distributions. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  19. Lei, J., Liu, S.: An image reconstruction algorithm based on the regularized minimax estimation for electrical capacitance tomography. J. Math. Imaging Vis. 39(3), 269–291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. McLachlan, G.: Finite Mixture Models. Wiley, Hoboken (2000)

    Book  MATH  Google Scholar 

  21. Mumcuoglu, E.U., Leahy, R., Cherry, S.R., Zhou, Z.: Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. IEEE Trans. Med. Imaging 13(4), 687–701 (1994)

    Article  Google Scholar 

  22. Nikou, C., Galatsanos, N., Likas, A.: A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. 16(4), 1121–1130 (2007)

    Article  MathSciNet  Google Scholar 

  23. Nikou, C., Likas, A., Galatsanos, N.: A Bayesian framework for image segmentation with spatially varying mixtures. IEEE Trans. Image Process. 19(9), 2278–2289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papadimitriou, K., Nikou, C.: Tomographic image reconstruction with a spatially varying Gaussian mixture prior. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4002–4006 (2015)

  25. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sabne, A., Wang, X., Kisner, S.J., Bouman, C.A., Raghunathan, A., Midkiff, S.P.: Model-based iterative CT image reconstruction on GPUs. In: Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 207–220 (2017)

  27. Sanjay-Gopal, S., Hebert, T.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998)

    Article  Google Scholar 

  28. Sawatzky, A., Brune, C., Kösters, T., Wuebbeling, F., Burger, M.: EM-TV methods for inverse problems with Poisson noise. In: Level Set and PDE Based Reconstruction Methods in Imaging, pp. 71–142. Springer (2013)

  29. Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: Majorization-minimization mixture model determination in image segmentation. In: 2011 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 2169–2176 (2011)

  30. Sfikas, G., Nikou, C., Galatsanos, N.: Edge preserving spatially varying mixtures for image segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, Alaska, USA (2008)

  31. Sfikas, G., Nikou, C., Heinrich, C., Galatsanos, N.: On the optimization of probability vector MRFS in image segmentation. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2009)

  32. Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: Spatially varying mixtures incorporating line processes for image segmentation. J. Math. Imaging Vis. 36(2), 91–110 (2009)

    Article  MathSciNet  Google Scholar 

  33. Sfikas, G., Heinrich, C., Zallat, J., Nikou, C., Galatsanos, N.: Recovery of polarimetric stokes images by spatial mixture models. J. Opt. Soc. Am. A 28(3), 465–474 (2011)

    Article  Google Scholar 

  34. Sheikh, H.R., Wang, Z.: Bovik, A.C., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  35. Shepp, L., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113–122 (1982)

    Article  Google Scholar 

  36. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008)

    Article  Google Scholar 

  37. Wang, G., Qi, J.: Pet image reconstruction using kernel method. IEEE Trans. Med. Imaging 34(1), 61–71 (2015)

    Article  Google Scholar 

  38. Wernick, M.N., Aarsvold, J.N.: Emission Tomography: the Fundamentals of PET and SPECT. Elsevier, Atlanta (2004)

    Google Scholar 

  39. Zhang, H., Wang, L., Yan, B., Li, L., Cai, A., Hu, G.: Constrained total generalized p-variation minimization for few-view X-ray computed tomography image reconstruction. PLoS ONE 11(2), 1–28 (2016)

    Google Scholar 

  40. Zhang, Y., Wang, Y., Zhang, W., Lin, F., Pu, Y., Zhou, J.: Statistical iterative reconstruction using adaptive fractional order regularization. Biomed. Opt. Express (OSA) 7(3), 1015–1029 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Sfikas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadimitriou, K., Sfikas, G. & Nikou, C. Tomographic Image Reconstruction with a Spatially Varying Gamma Mixture Prior. J Math Imaging Vis 60, 1355–1365 (2018). https://doi.org/10.1007/s10851-018-0817-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0817-x

Keywords

Navigation