Advertisement

Recovery from Errors Due to Domain Truncation in Magnetic Particle Imaging: Approximation Error Modeling Approach

  • Christina Brandt
  • Aku Seppänen
Article

Abstract

In magnetic particle imaging, the concentration of magnetic nanoparticles is imaged based on their nonlinear magnetization response to an applied magnetic field. Because of security limitations regarding the magnetic field, the field of view does not always cover the entire body being imaged. However, nanoparticles outside the field of view can also be excited by the applied magnetic field and therefore contribute to the measured signal. This leads to domain truncation artifacts, which can often be observed in the reconstructed particle concentrations. In this paper, a computational method for reducing such truncation artifacts is proposed. For this aim, an approximative statistical model for the modeling errors caused by domain truncation is constructed, and the reconstruction problem in magnetic particle imaging is solved in the Bayesian framework of inverse problems. Several numerical test examples illustrate the successful recovery from truncation artifacts.

Keywords

Magnetic particle imaging Bayesian inversion Approximation error modeling Truncation artifacts 

Notes

Acknowledgements

This work was supported by the Academy of Finland (projects 270174, 286964 and 303801, and the Finnish Center of Excellence of Inverse Problems Research 2012–2017).

References

  1. 1.
    Ahlborg, M., Kaethner, C., Knopp, T., Szwargulski, P., Buzug, T.: Using data redundancy gained by patch overlaps to reduce truncation artifacts in magnetic particle imaging. Phys. Med. Biol. (2016).  https://doi.org/10.1088/0031-9155/61/12/4583 Google Scholar
  2. 2.
    Almeida, M.S.C., Figueiredo, M.A.T.: Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. Image Process. 22, 3074–3086 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Andrews, H.C.: Digital image restoration: a survey. IEEE Comput. 7, 36–45 (2005)CrossRefMATHGoogle Scholar
  4. 4.
    Bertero, M., Boccacci, P.: A simple method for the reduction of boundary effects in the richardson-lucy approach to image deconvolution. A&A 437(1), 369–374 (2005).  https://doi.org/10.1051/0004-6361:20052717 CrossRefGoogle Scholar
  5. 5.
    Calvetti, D., Somersalo, E.: Statistical elimination of boundary artefacts in image deblurring. Inverse Probl. 21(5), 1697 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chan, T.F., Yip, A.M., Park, F.E.: Simultaneous total variation image inpainting and blind deconvolution. Int. J. Imaging Syst. Technol. 15, 92–102 (2005)CrossRefGoogle Scholar
  7. 7.
    Croft, L.R., Goodwill, P.W., Conolly, S.M.: Relaxation in x-space magnetic particle imaging. IEEE Trans. Med. Imaging 31(12), 2335–2342 (2012)CrossRefGoogle Scholar
  8. 8.
    Demircan-Tureyen, E., Kamasak, M.E.: Directional Total Variation Based Image Deconvolution with Unknown Boundaries, pp. 473–484. Springer, Cham (2017)Google Scholar
  9. 9.
    Donatelli, M., Estatico, C., Martinelli, A., Serra-Capizzano, S.: Improved image deblurring with anti-reflective boundary conditions and re-blurring. Inverse Prob. 22(6), 2035 (2006). URL http://stacks.iop.org/0266-5611/22/i=6/a=008
  10. 10.
    Fan, Y.W.D., Nagy, J.G.: Synthetic boundary conditions for image deblurring. Linear Algebra Appl. 434(11), 2244–2268 (2011).  https://doi.org/10.1016/j.laa.2009.12.021. Special Issue: Devoted to the 2nd NASC 08 Conference in Nanjing (NSC)
  11. 11.
    Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046), 1214–1217 (2005)CrossRefGoogle Scholar
  12. 12.
    Goodwill, P., Conolly, S.M.: The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans. Med. Imaging 29, 1851–1859 (2010)CrossRefGoogle Scholar
  13. 13.
    Grüttner, M., Sattel, T., Bringout, G., Graeser, M., Tenner, W., Wojtczyk, H., Buzug, T.: Truncation artifacts in magnetic particle imaging. In: Magnetic Particle Imaging (IWMPI), 2013 International Workshop on, pp. 1–1. IEEE (2013)Google Scholar
  14. 14.
    Grüttner, M., Sattel, T.F., Graeser, M., Wojtczyk, H., Bringout, G., Tenner, W., Buzug, T.M.: Enlarging the Field of View in Magnetic Particle Imaging—A Comparison, pp. 249–253. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-24133-8-40
  15. 15.
    Haegele, J., Rahmer, J., Gleich, B., Borgert, J., Wojtczyk, H., Panagiotopoulos, N., Buzug, T., Barkhausen, J., Vogt, F.: Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology 265(3), 933–938 (2012)CrossRefGoogle Scholar
  16. 16.
    Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer (2005).  https://doi.org/10.1007/b138659
  17. 17.
    Knopp, T., Biederer, S., Sattel, T.F., Buzug, T.M.: Singular value analysis for magnetic particle imaging. In: IEEE Nuclear Science Symposium Conference Record 2008, pp. 4525–4529 (2008)Google Scholar
  18. 18.
    Knopp, T., Biederer, S., Sattel, T.F., Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.M.: 2D model-based reconstruction for magnetic particle imaging. Med. Phys. 37(2), 485–491 (2010)CrossRefGoogle Scholar
  19. 19.
    Knopp, T., Buzug, T.: Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Springer, Berlin (2012)CrossRefGoogle Scholar
  20. 20.
    Knopp, T., Rahmer, J., Sattel, T., Biederer, S., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.: Weighted iterative reconstruction for magnetic particle imaging. Phys. Med. Biol. 55(6), 1577 (2010)CrossRefGoogle Scholar
  21. 21.
    Knopp, T., Them, K., Kaul, M., Gdaniec, N.: Joint reconstruction of non-overlapping magnetic particle imaging focus-field data. Phys. Med. Biol. 60(8), L15 (2015).  https://doi.org/10.1088/0031-9155/60/8/L15 CrossRefGoogle Scholar
  22. 22.
    Kolehmainen, V., Tarvainen, T., Arridge, S.R., Kaipio, J.P.: Marginalization of uninteresting distributed parameters in inverse problems-application to diffuse optical tomography. Int. J Uncertain. Quantif 1(1) (2011)Google Scholar
  23. 23.
    Konkle, J., Goodwill, P., Hensley, D., Orendorff, R., Lustig, M., Conolly, S.: A convex formulation for magnetic particle imaging x-space reconstruction. PLoS ONE 10(10), e0140,137 (2015)CrossRefGoogle Scholar
  24. 24.
    Lehikoinen, A., Finsterle, S., Voutilainen, A., Heikkinen, L., Vauhkonen, M., Kaipio, J.: Approximation errors and truncation of computational domains with application to geophysical tomography. Inverse Probl. Imaging 1(2), 371 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lieberman, C., Willcox, K., Ghattas, O.: Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Sci. Comput. 32(5), 2523–2542 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lipponen, A., Seppänen, A., Kaipio, J.: Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition. J. Electronic Imaging 22(2), 023008 (2013)CrossRefGoogle Scholar
  27. 27.
    Liu, R., Jia, J.: Reducing boundary artifacts in image deconvolution. ICIP 2018, 505–508 (2008).  https://doi.org/10.1109/ICIP.2008.4711802 Google Scholar
  28. 28.
    März, T., Weinmann, A.: Model-based reconstruction for magnetic particle imaging in 2D and 3D. Inverse Probl. Imag. 10(4), 1087–1110 (2016)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Matakos, A., Ramani, S., Fessler, J.A.: Accelerated edge-preserving image restoration without boundary artifacts. IEEE Trans. Image Process. 22, 2019–2029 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Mozumder, M., Tarvainen, T., Kaipio, J.P., Arridge, S.R., Kolehmainen, V.: Compensation of modeling errors due to unknown domain boundary in diffuse optical tomography. JOSA A 31(8), 1847–1855 (2014)CrossRefGoogle Scholar
  31. 31.
    Ng, M.K., Chan, R.H., Tang, W.C.: A fast algorithm for deblurring models with neumann boundary conditions. SIAM J. Sci. Comput. 21, 851–866 (1999)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Ng, M.K., Plemmons, R.J., Pimentel, F.: A new approach to constrained total least squares image restoration. Linear Algebra Appl. 316(1), 237–258 (2000).  https://doi.org/10.1016/S0024-3795(00)00115-4. Special Issue: Conference celebrating the 60th birthday of Robert J. Plemmons
  33. 33.
    Nissinen, A., Heikkinen, L., Kolehmainen, V., Kaipio, J.: Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas. Sci. Technol. 20(10), 105504 (2009)CrossRefGoogle Scholar
  34. 34.
    Nissinen, A., Kolehmainen, V.P., Kaipio, J.P.: Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography. IEEE Trans. Med. Imaging 30(2), 231–242 (2011)CrossRefMATHGoogle Scholar
  35. 35.
    Prato, M., Cavicchioli, R., Zanni, L., Boccacci, P., Bertero, M.: Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes. AAP 539, A133 (2012).  https://doi.org/10.1051/0004-6361/201118681 CrossRefGoogle Scholar
  36. 36.
    Rahmer, J., Gleich, B., Bontus, C., Schmale, I.: Results on rapid 3D magnetic particle imaging with a large field of view. In: Proc. Intl. Soc. Mag. (2011)Google Scholar
  37. 37.
    Reeves, S.J.: Fast image restoration without boundary artifacts. Trans. Image Process. 14(10), 1448–53 (2005).  https://doi.org/10.1109/TIP.2005.854474 CrossRefGoogle Scholar
  38. 38.
    Saritas, E.U., Goodwill, P.W., Zhang, G.Z., Conolly, S.M.: Magnetostimulation limits in magnetic particle imaging. IEEE Trans. Med. Imaging 32(9), 1600–1610 (2013)CrossRefGoogle Scholar
  39. 39.
    Schmale, I., Gleich, B., Schmidt, J., Rahmer, J., Bontus, C., Eckart, R., David, B., Heinrich, M., Mende, O., Woywode, O.: Human pns and sar study in the frequency range from 24 to 162 khz. In: 2013 International Workshop on Magnetic Particle Imaging (IWMPI), pp. 1–1. IEEE (2013)Google Scholar
  40. 40.
    Simoes, M., Almeida, L.B., Bioucas-Dias, J., Chanussot, J.: A framework for fast image deconvolution with incomplete observations. IEEE Trans. Image Process. 25(11), 5266–5280 (2016).  https://doi.org/10.1109/TIP.2016.2603920 MathSciNetCrossRefGoogle Scholar
  41. 41.
    Sorel, M.: Removing boundary artifacts for real-time iterated shrinkage deconvolution. IEEE Trans. Image Process. 21, 2329–2334 (2012)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Them, K., Salamon, J., Szwargulski, P., Sequeira, S., Kaul, M.G., Lange, C., Ittrich, H., Knopp, T.: Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging. Phys. Med. Biol. 61(9), 3279 (2016). URL http://stacks.iop.org/0031-9155/61/i=9/a=3279
  43. 43.
    Weber, A., Werner, F., Weizenecker, J., Buzug, T., Knopp, T.: Artifact free reconstruction with the system matrix approach by overscanning the field-free-point trajectory in magnetic particle imaging. Phys. Med. Biol. 61(2), 475 (2015)CrossRefGoogle Scholar
  44. 44.
    Weizenecker, J., Borgert, J., Gleich, B.: A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys. Med. Biol. 52, 6363–6374 (2007)CrossRefGoogle Scholar
  45. 45.
    Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J.: Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54(5), L1 (2009)CrossRefGoogle Scholar
  46. 46.
    Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J.: Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54, L1–L10 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
  2. 2.Department of MathematicsUniversität HamburgHamburgGermany

Personalised recommendations