Skip to main content
Log in

A Geometric Model of Brightness Perception and Its Application to Color Images Correction

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Human perception involves many features like contours, shapes, textures, and colors to name a few. Whereas several geometric models for contours, shapes and textures perception have been proposed, the geometry of color perception has received very little attention, possibly due to the fact that our perception of colors is still not fully understood. Nonetheless, there exists a class of mathematical models, gathered under the name Retinex, which aim at modeling the color perception of an image, which are inspired by psychophysical/physiological knowledge about color perception, and which can geometrically be viewed as the averaging of perceptual distances between image pixels. Some of the Retinex models turn out to be associated with an efficient image processing technique for the correction of camera output images. The aim of this paper is to show that this image processing technique can be improved by including more properties of the human visual system. To that purpose, we first present a generalization of the perceptual distance between image pixels by considering the parallel transport map associated with a covariant derivative on a vector bundle, from which can be derived a new image processing model for color images correction. Then, we show that the family of covariant derivatives constructed in Batard and Sochen (J Math Imaging Vis 48(3):517–543 2014) can model some color appearance phenomena related to brightness perception. Finally, we conduct experiments in which we show that the image processing techniques induced by these covariant derivatives outperform the original approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Batard, T., Bertalmío, M.: A class of nonlocal variational problems on a vector bundle for color image local contrast reduction/enhancement. Geom. Imaging Comput. 2(3), 187–236 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batard, T., Sochen, N.: A class of generalized laplacians devoted to multi-channel image processing. J. Math. Imaging Vis. 48(3), 517–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batard, T., Bertalmío, M.: Duality Principle for Image Regularization and Perceptual Color Correction Models. Proc. 5th Int. Conf. Scale-Space and Variational Methods in Computer Vision, J.F. Aujol et al. Eds LNCS 9087, 449-460 (2015)

  4. Ben-Shahar, O., Zucker, S.W.: Hue geometry and horizontal connections. Neural Netw. 17(5–6), 753–771 (2004)

    Article  Google Scholar 

  5. Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. Image Process. 16(4), 1058–1072 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bertalmío, M., Caselles, V., Provenzi, E.: Issues about Retinex Theory and Contrast Enhancement. Int. J. Comput. Vis. 83(1), 101–119 (2009)

    Article  Google Scholar 

  7. Bertalmío, M.: Image Processing for Cinema. Chapman & Hall, Boca Raton (2014)

    MATH  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cooper, T.J., Baqai, F.A.: Analysis and extensions of the Frankle–McCann retinex algorithm. J. Electronic Imaging 13(1), 85–92 (2004)

    Article  Google Scholar 

  10. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann, Burlington (2009)

    Google Scholar 

  11. Fairchild, M.D., Pirrotta, E.: Predicting the lightness of chromatic objects colors using CIELAB. Color Res. Appl. 16(6), 385–393 (1991)

    Article  Google Scholar 

  12. Ferradans, S., Bertalmío, M., Provenzi, E., Caselles, V.: An analysis of visual adaptation and contrast perception for tone mapping. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 2002–2012 (2011)

    Article  Google Scholar 

  13. Foster, D.H.: Color constancy. Vis. Res. 51(7), 674–700 (2011)

    Article  Google Scholar 

  14. Georgiev, T.: Relighting, Retinex theory, and Perceived Gradients. Proceedings of Mirage (2005)

  15. Golz, J., MacLeod, D.I.A.: Influence of scene statistics on colour constancy. Nature 415, 637–640 (2002)

    Article  Google Scholar 

  16. Horn, B.: Determining lightness from an image. Comput. Graph. Image Process. 3(4), 277–299 (1974)

    Article  Google Scholar 

  17. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2008)

    MATH  Google Scholar 

  18. http://r0k.us/graphics/kodak/

  19. Land, E., McCann, J.J.: Lightness and retinex theory. J. Optical Soc. of Am 61(1), 1–11 (1971)

    Article  Google Scholar 

  20. McCann, J.J., Rizzi, A.: The Art and Science of HDR Imaging. Wiley, New York (2011)

    Book  Google Scholar 

  21. Marini, D., Rizzi, A.: A computational approach to color adaptation effects. Image Vis. Comput. 18(13), 1377–1388 (2000)

    Article  Google Scholar 

  22. Nikolova, M., Steidl, G.: Fast Hue and range preserving histogram specification: theory and new algorithms for color image enhancement. IEEE Trans. Image Process. 23(9), 4087–4100 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Palma-Amestoy, R., Provenzi, E., Bertalmío, M., Caselles, V.: A perceptually inspired variational framework for color enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 458–474 (2009)

    Article  Google Scholar 

  24. Pierre, F., Aujol, J.-F., Bugeau, A., Steidl, G., Ta, V.-T.: Variational contrast enhancement of gray-scale and RGB images. J. Math. Imag. Vis. 57(1), 99–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Provenzi, E., De Carli, L., Rizzi, A., Marini, D.: Mathematical definition and analysis of the retinex algorithm. J. Opt. Soc. Am. A 22(12), 2613–2621 (2005)

    Article  MathSciNet  Google Scholar 

  26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, J.: On the foundations of vision modeling: I. Weber’s law and Weberized TV restoration. Phys. D Nonlinear Phenom. 175(3–4), 241–251 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Process. 7(3), 310–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64(3), 153–181 (1957)

    Article  Google Scholar 

  30. Toland, J.F.: A duality principle for non-convex optimisation and the calculus of variations. Arch. Ration. Mech. Anal. 71(1), 4161 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Valeton, J., van Norren, D.: Light adaptation of primate cones: an analysis based on extracellular data. Vision. Res. 23(12), 1539–1547 (1983)

    Article  Google Scholar 

  32. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulas. Wiley, New York (1982)

    Google Scholar 

  33. Yeonan-Kim, J., Bertalmío, M.: Analysis of retinal and cortical components of retinex algorithms. J. Electron. Imaging 26(3), 031208 (2017)

    Article  Google Scholar 

  34. Zosso, D., Tran, G., Osher, S.J.: Non-local retinex—a unifying framework and beyond. SIAM J. Imag. Sci. 8(2), 787–826 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for helpful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Batard.

Additional information

This work was supported by the European Research Council, Starting Grant ref. 306337, by the Spanish government and FEDER Fund, Grant Ref. TIN2015-71537-P (MINECO/FEDER,UE), and by the Icrea Academia Award.

Appendix: Expressions of Some Moving Frames

Appendix: Expressions of Some Moving Frames

$$\begin{aligned} \left( \begin{array}{ccc} \cos \varphi \sin \theta \, &{} \, -g_{11} \sin \varphi - g_{21} \cos \theta \cos \varphi \, &{} \, -g_{12} \sin \varphi - g_{22} \cos \theta \cos \varphi \\ \\ \sin \varphi \sin \theta &{} g_{11} \cos \varphi - g_{21} \sin \varphi \cos \theta &{} g_{12} \cos \varphi - g_{22} \sin \varphi \cos \theta \\ \\ \cos \theta &{} g_{21}\sin \theta &{} g_{22} \sin \theta \end{array} \right) \end{aligned}$$
(106)

with \(g_{11},g_{12},g_{21},g_{22} \in C^1(\varOmega )\) satisfying

$$\begin{aligned}&\left\{ \begin{array}{ccc} g_{11}^2+g_{21}^2 &{} = &{} 1 \\ g_{12}^2+g_{22}^2 &{} = &{} 1\\ g_{11}g_{12}+g_{21}g_{22} &{} = &{} 0 \\ g_{11} \, d g_{12}+g_{21} \, dg_{22} &{} = &{} \cos \theta \, d\varphi \end{array} \right. \nonumber \\&\quad \left( \begin{array}{ccc} \sin \theta \cos \alpha + \cos \theta \cos \beta \sin \alpha &{} - \sin \theta \sin \alpha + \cos \theta \cos \beta \cos \alpha &{} \cos \theta \sin \beta \\ \\ - \cos \theta \cos \alpha + \cos \beta \sin \theta \sin \alpha &{} \cos \theta \sin \alpha + \cos \beta \sin \theta \cos \alpha &{} \sin \theta \sin \beta \\ \\ - \sin \beta \sin \alpha &{} - \sin \beta \cos \alpha &{} \cos \beta \end{array} \right) \nonumber \\ \end{aligned}$$
(107)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batard, T., Bertalmío, M. A Geometric Model of Brightness Perception and Its Application to Color Images Correction. J Math Imaging Vis 60, 849–881 (2018). https://doi.org/10.1007/s10851-018-0792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0792-2

Keywords

Navigation