Skip to main content
Log in

Fast Asymmetric Fronts Propagation for Image Segmentation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we introduce a generalized asymmetric fronts propagation model based on the geodesic distance maps and the Eikonal partial differential equations. One of the key ingredients for the computation of the geodesic distance map is the geodesic metric, which can govern the action of the geodesic distance level set propagation. We consider a Finsler metric with the Randers form, through which the asymmetry and anisotropy enhancements can be taken into account to prevent the fronts leaking problem during the fronts propagation. These enhancements can be derived from the image edge-dependent vector field such as the gradient vector flow. The numerical implementations are carried out by the Finsler variant of the fast marching method, leading to very efficient interactive segmentation schemes. We apply the proposed Finsler fronts propagation model to image segmentation applications. Specifically, the foreground and background segmentation is implemented by the Voronoi index map. In addition, for the application of tubularity segmentation, we exploit the level set lines of the geodesic distance map associated with the proposed Finsler metric providing that a thresholding value is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Initially, each source point \(\mathbf {x}\in \mathfrak {s}\) is tagged as Trial and the remaining grid points are tagged as Far.

  2. These ellipses are the boundaries of the control sets.

  3. Note that metrics \(\mathcal {G}_\mathfrak {g}^{\varvec{\alpha }}\) and \({\tilde{\mathcal {G}}}_\mathfrak {g}^{\varvec{\alpha }}\) have the identical anisotropy and asymmetry properties to \(\mathcal {F}_{\mathfrak {g}}^{\varvec{\alpha }}\) and \({\tilde{\mathcal {F}}}_{\mathfrak {g}}^{\varvec{\alpha }}\), respectively.

References

  1. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 315–327 (2012)

    Article  Google Scholar 

  3. Arbeláez, P., Cohen, L.: Constrained image segmentation from hierarchical boundaries. In: Proceedings of CVPR, pp. 1–8 (2008)

  4. Arbeláez, P.A., Cohen, L.D.: Energy partitions and image segmentation. J. Math. Imaging Vis. 20(1), 43–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, X., Sapiro, G.: Geodesic matting: a framework for fast interactive image and video segmentation and matting. Int. J. Comput. Vis. 82(2), 113–132 (2009)

    Article  Google Scholar 

  6. Bekkers, E.J., Duits, R., Mashtakov, A., Sanguinetti, G.R.: A PDE approach to data-driven sub-Riemannian geodesics in SE (2). SIAM J. Imaging Sci. 8(4), 2740–2770 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benmansour, F., Cohen, L.D.: Fast object segmentation by growing minimal paths from a single point on 2D or 3D images. J. Math. Imaging Vis. 33(2), 209–221 (2009)

    Article  MathSciNet  Google Scholar 

  8. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92(2), 192–210 (2011)

    Article  Google Scholar 

  9. Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton–Jacobi equations based on a local variational principle. Comput. Vis. Sci. 9(2), 57–69 (2006)

    Article  MathSciNet  Google Scholar 

  10. Cardinal, M.H., Meunier, J., et al.: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Trans. Med. Imaging 25(5), 590–601 (2006)

    Article  Google Scholar 

  11. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  13. Chen, D., Cohen, L.D.: Vessel tree segmentation via front propagation and dynamic anisotropic riemannian metric. In: Proceedings of ISBI, pp. 1131–1134 (2016)

  14. Chen, D., Mirebeau, J.M., Cohen, L.D.: Global minimum for curvature penalized minimal path method. In: Proceedings of BMVC (2015)

  15. Chen, D., Mirebeau, J.M., Cohen, L.D.: Finsler geodesic evolution model for region-based active contours. In: Proceedings of BMVC (2016)

  16. Chen, D., Mirebeau, J.M., Cohen, L.D.: Global minimum for a Finsler elastica minimal path approach. Int. J. Comput. Vis. 122(3), 458–483 (2017)

    Article  MathSciNet  Google Scholar 

  17. Cohen, L.: Multiple contour finding and perceptual grouping using minimal paths. J. Math. Imaging Vis. 14(3), 225–236 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cohen, L.D.: On active contour models and balloons. CVGIP: Image Underst. 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  19. Cohen, L.D., Deschamps, T.: Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging. Comput. Methods Biomech. Biomed. Eng. 10(4), 289–305 (2007)

    Article  Google Scholar 

  20. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)

    Article  Google Scholar 

  21. Criminisi, A., Sharp, T., Blake, A.: Geos: Geodesic image segmentation. In: Proceedings of ECCV, pp. 99–112 (2008)

  22. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Duits, R., Meesters, S.P., Mirebeau, J.M., Portegies, J.M.: Optimal paths for variants of the 2D and 3D Reeds-Shepp car with applications in image analysis. (2016, submitted)

  24. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Proceedings of MICCAI, pp. 130–137 (1998)

  25. Franken, E., Duits, R.: Crossing-preserving coherence-enhancing diffusion on invertible orientation scores. Int. J. Comput. Vis. 85(3), 253 (2009)

    Article  Google Scholar 

  26. Freeman, W.T., Adelson, E.H., et al.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Article  Google Scholar 

  27. Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1007–1019 (2004)

    Article  Google Scholar 

  28. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  29. Kaul, V., Yezzi, A., Tsai, Y.: Detecting curves with unknown endpoints and arbitrary topology using minimal paths. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1952–1965 (2012)

    Article  Google Scholar 

  30. Kimmel, R., Bruckstein, A.M.: Regularized laplacian zero crossings as optimal edge integrators. Int. J. Comput. Vis. 53(3), 225–243 (2003)

    Article  Google Scholar 

  31. Law, M.W., Chung, A.C.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Proceedings of ECCV, pp. 368–382 (2008)

  32. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, H., Yezzi, A.: Local or global minima: flexible dual-front active contours. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 1–14 (2007)

    Article  Google Scholar 

  34. Li, H., Yezzi, A.: Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Trans. Med. Imaging 26(9), 1213–1223 (2007)

    Article  Google Scholar 

  35. Malladi, R., Sethian, J., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  36. Malladi, R., Sethian, J.A.: A real-time algorithm for medical shape recovery. In: Proceeding of ICCV, pp. 304–310 (1998)

  37. Mashtakov, A., Duits, R., Sachkov, Y., Bekkers, E.J., Beschastnyi, I.: Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics in SO(3). J. Math. Imaging Vis. 58(2), 239–264 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 412–423 (2008)

    Article  Google Scholar 

  39. Mille, J., Bougleux, S., Cohen, L.D.: Combination of piecewise-geodesic paths for interactive segmentation. Int. J. Comput. Vis. 112(1), 1–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mirebeau, J.M.: Anisotropic fast-marching on cartesian grids using lattice basis reduction. SIAM J. Numer. Anal. 52(4), 1573–1599 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mirebeau, J.M.: Efficient fast marching with Finsler metrics. Numer. Math. 126(3), 515–557 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mirebeau, J.-M.: Anisotropic fast-marching on cartesian grids using voronoi’s first reduction of quadratic forms (2017). https://hal.archives-ouvertes.fr/hal-01507334/file/HamiltonFM.pdf

  43. Mirebeau, J.-M.: Fast-marching methods for curvature penalized shortest paths. J. Math. Imaging Vis. (2017). https://doi.org/10.1007/s10851-017-0778-5

  44. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Price, B.L., Morse, B., Cohen, S.: Geodesic graph cut for interactive image segmentation. In: Proceedings of CVPR, pp. 3161–3168 (2010)

  46. Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59(2), 195 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  48. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  52. Weber, O., Devir, Y.S., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Parallel algorithms for approximation of distance maps on parametric surfaces. ACM Trans. Graph. 27(4), 104 (2008)

    Article  Google Scholar 

  53. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yatziv, L., Bartesaghi, A., Sapiro, G.: O (N) implementation of the fast marching algorithm. J. Comput. Phys. 212(2), 393–399 (2006)

    Article  MATH  Google Scholar 

  55. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16(2), 199–209 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the anonymous reviewers for their detailed remarks that helped us improve the presentation of this paper. The authors thank Dr. Jean-Marie Mirebeau from Université Paris-Sud for his fruitful discussion and creative suggestions. The first author also thanks Dr. Gabriel Peyré from ENS Paris for his financial support. This work was partially supported by the European Research Council (ERC project SIGMA-Vision).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Cohen, L.D. Fast Asymmetric Fronts Propagation for Image Segmentation. J Math Imaging Vis 60, 766–783 (2018). https://doi.org/10.1007/s10851-017-0776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0776-7

Keywords

Navigation