Skip to main content
Log in

Improved Susceptibility Artifact Correction of Echo-Planar MRI using the Alternating Direction Method of Multipliers

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present an improved technique for susceptibility artifact correction in echo-planar imaging (EPI), a widely used ultra-fast magnetic resonance imaging (MRI) technique. Our method corrects geometric deformations and intensity modulations present in EPI images. We consider a tailored variational image registration problem incorporating a physical distortion model and aiming at minimizing the distance of two oppositely distorted images subject to invertibility constraints. We derive a novel face-staggered discretization of the variational problem that renders the discretized distance function and constraints separable. Motivated by the presence of a smoothness regularizer, which leads to global coupling, we apply the alternating direction method of multipliers (ADMM) to split the problem into simpler subproblems. We prove the convergence of ADMM for this non-convex optimization problem. We show the superiority of our scheme compared to two state-of-the-art methods both in terms of correction quality and time-to-solution for 13 high-resolution 3D imaging datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andersson, J.L.R., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2), 870–888 (2003). doi:10.1016/S1053-8119(03)00336-7

    Article  Google Scholar 

  2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and trends & #x00AE. Mach. Learn. 3(1), 1–122 (2011). doi:10.1561/2200000016

    MATH  Google Scholar 

  3. Chang, H., Fitzpatrick, J.M.: A technique for accurate magnetic-resonance-imaging in the presence of field inhomogeneities. IEEE Trans. Med. Imag. 11(3), 319–329 (1992). doi:10.1109/42.158935

    Article  Google Scholar 

  4. Daga, P., Pendse, T., Modat, M., White, M., Mancini, L., Winston, G.P., McEvoy, A.W., Thornton, J., Yousry, T., Drobnjak, I., Duncan, J.S., Ourselin, S.: Susceptibility artefact correction using dynamic graph cuts: application to neurosurgery. Med. Image Anal. 18(7), 1132–1142 (2014). doi:10.1016/j.media.2014.06.008

    Article  Google Scholar 

  5. Eckstein, J.: Augmented Lagrangian and alternating direction methods for convex optimization: a tutorial and some illustrative computational results. RUTCOR Research Reports, Piscataway, NJ (2012)

  6. Friston, K.J.: Chapter 31—Experimental design and statistical parametric mapping. In: Frackowiak, R.S., Friston, K.J., Frith, C.D., Dolan, R.J., Price, C.J., Zeki, S. , Ashburner, J.T., Penny, W.D. (eds.) Human Brain Function, 2nd edn., pp. 599 – 632. Academic Press, Burlington, MA (2004). doi:10.1016/B978-012264841-0/50033-0

  7. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976). doi:10.1016/0898-1221(76)90003-1

    Article  MATH  Google Scholar 

  8. Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In: Modeling, Simulation and Optimization for Science and Technology, pp. 59–82. Springer, Dordrecht (2014). doi:10.1007/978-94-017-9054-3_4

  9. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979). doi:10.1080/00401706.1979.10489751

    Article  MathSciNet  MATH  Google Scholar 

  10. Haber, E., Oldenburg, D.: A GCV based method for nonlinear ill-posed problems. Comput. Geosci. 4, 41–63 (2000). doi:10.1023/A:1011599530422

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansen, P.C.: Rank-deficient and discrete ill-posed problems. SIAM monographs on mathematical modeling and computation. Society for industrial and applied mathematics (SIAM), Philadelphia (1998). doi:10.1137/1.9780898719697

  12. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra and Filtering. Matrices, Spectra, and Filtering. Society for industrial and applied mathematics (SIAM), Philadelphia (2006). doi:10.1137/1.9780898718874

  13. Holland, D., Kuperman, J.M., Dale, A.M.: Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. NeuroImage 50(1), 175–183 (2010). doi:10.1016/j.neuroimage.2009.11.044

    Article  Google Scholar 

  14. Hong, X., To, X.V., Teh, I., Soh, J.R., Chuang, K.H.: Evaluation of EPI distortion correction methods for quantitative MRI of the brain at high magnetic field. Magn. Reson. Imag. 33(9), 1098–1105 (2015). doi:10.1016/j.mri.2015.06.010

    Article  Google Scholar 

  15. Irfanoglu, M.O., Modi, P., Nayak, A., Hutchinson, E.B., Sarlls, J., Pierpaoli, C.: DR-BUDDI (diffeomorphic registration for blip-up blip-down diffusion imaging) method for correcting echo planar imaging distortions. NeuroImage 106(C), 284–299 (2015). doi:10.1016/j.neuroimage.2014.11.042

    Article  Google Scholar 

  16. Jezzard, P.: Correction of geometric distortion in fMRI data. NeuroImage 62(2), 648–651 (2012). doi:10.1016/j.neuroimage.2011.09.010

    Article  Google Scholar 

  17. Jezzard, P., Balaban, R.S.: Correction for geometric distortion in echo planar images from B0 field variations. Magn. Reson. Med. 34(1), 65–73 (1995). doi:10.1002/mrm.1910340111

    Article  Google Scholar 

  18. Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imag. 13(4), 534–546 (2001). doi:10.1002/jmri.1076

    Article  Google Scholar 

  19. Madai, V.I., Martin, S.Z., von Samson-Himmelstjerna, F.C., Herzig, C.X., Mutke, M.A., Wood, C.N., Thamm, T., Zweynert, S., Bauer, M., Hetzer, S., Günther, M., Sobesky, J.: Correction for susceptibility distortions increases the performance of arterial spin labeling in patients with cerebrovascular disease. J. Neuroimag. 26(4), 436–444 (2016). doi:10.1111/jon.12331

    Article  Google Scholar 

  20. Modersitzki, J.: FAIR: Flexible algorithms for image registration, in Fundamentals of Algorithms, vol. 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2009). doi:10.1137/1.9780898718843

  21. de Munck, J.C., Bhagwandien, R., Muller, S.H., Verster, F.C., Van Herk, M.B.: The computation of MR image distortions caused by tissue susceptibility using the boundary element method. IEEE Trans. Med. Imag. 15(5), 620–627 (1996). doi:10.1109/42.538939

    Article  Google Scholar 

  22. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). doi:10.1007/978-0-387-40065-5

    Google Scholar 

  23. Rockafeller, R.T., Roger, J.B.W.: Variational Analysis, Grundlehren der mathematischen Wissenschaft, vol. 317. Springer, Berlin (1998, 3rd printing 2009). doi:10.1007/978-0-387-40065-5

  24. Ruthotto, L., Kugel, H., Olesch, J., Fischer, B., Modersitzki, J., Burger, M., Wolters, C.H.: Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images. Phys. Med. Biol. 57(18), 5715–5731 (2012). doi:10.1088/0031-9155/57/18/5715

    Article  Google Scholar 

  25. Ruthotto, L., Modersitzki, J.: Non-linear image registration. In: Handbook of Mathematical Methods in Imaging, pp. 2005–2051. Springer, New York (2015). doi:10.1007/978-1-4939-0790-8_39

  26. Ruthotto, L., Mohammadi, S., Heck, C., Modersitzki J.W.N.: Hyperelastic susceptibility artifact correction of DTI in SPM. Bildverarbeitung für die Medizin (2013). doi:10.1007/978-3-642-36480-8_60

  27. Skare, S., Andersson, J.L.R.: Correction of MR image distortions induced by metallic objects using a 3D cubic B-spline basis set: application to stereotactic surgical planning. Magn. Reson. Med. 54(1), 169–181 (2005). doi:10.1002/mrm.20528

    Article  Google Scholar 

  28. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004). doi:10.1016/j.neuroimage.2004.07.051

  29. Stehling, M.K., Turner, R., Mansfield, P.: Echo-planar imaging—magnetic-resonance-imaging in a fraction of a second. Science 254(5028), 43–50 (1991). doi:10.1126/science.1925560

    Article  Google Scholar 

  30. NeuroImage The human connectome project: a data acquisition perspective. 62(4), 2222–2231 (2012). doi:10.1016/j.neuroimage.2012.02.018

  31. Vardal, J., Salo, R.A., Larsson, C., Dale, A.M., Holland, D., Groote, I.R., Bjørnerud, A.: Correction of B0-distortions in echo-planar-imaging-based perfusion-weighted MRI. J. Magn. Reson. Imag. 39(3), 722–728 (2013). doi:10.1002/jmri.24213

    Article  Google Scholar 

  32. Vogel, C.R.: Computational methods for inverse problems. Society for industrial and applied mathematics (SIAM), Philadelphia, PA, Philadelphia (2002). doi:10.1137/1.9780898717570

  33. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization (2015). arXiv:1511.06324

Download references

Acknowledgements

The 3D data are provided by the Human Connectome Project, WU-Minn Consortium (PIs: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research and by the McDonnell Center for Systems Neuroscience at Washington University. We also like to thank Siawoosh Mohammadi (University Hospital Hamburg Eppendorf, Germany) and Harald Kugel (Department of Clinical Radiology, University Hospital Münster, Germany) for fruitful discussions and helpful suggestions on a first draft of this manuscript. This work is partially supported by the National Science Foundation (NSF) award DMS 1522599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Ruthotto.

Additional information

The second author’s work is supported in part by National Science Foundation (NSF) grant DMS 1522599.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macdonald, J., Ruthotto, L. Improved Susceptibility Artifact Correction of Echo-Planar MRI using the Alternating Direction Method of Multipliers. J Math Imaging Vis 60, 268–282 (2018). https://doi.org/10.1007/s10851-017-0757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0757-x

Keywords

Mathematics Subject Classification

Navigation