Advertisement

Journal of Mathematical Imaging and Vision

, Volume 60, Issue 1, pp 50–69 | Cite as

Automatic Choice of the Threshold of a Grain Filter via Galton–Watson Trees: Application to Granite Cracks Detection

  • Romain Abraham
  • Maïtine BergouniouxEmail author
  • Pierre Debs
Article
  • 301 Downloads

Abstract

The goal of this paper is the presentation of a post-processing method allowing to remove impulse noise in binary images, while preserving thin structures. We use a grain filter. We propose a method to automatically determine the required threshold using Galton–Watson processes. We present numerical results and a complete analysis on a synthetic image. We end the numerical section considering a specific application to granite samples crack detection: Here we deal with X-tomography images that have been binarized via preprocessing techniques and we want to remove residual impulse noise while keeping cracks and micro-cracks structure.

Keywords

Image processing Galton–Watson Grain filters Cracks 

Mathematics Subject Classification

60J80 68U10 94A12 

Notes

Acknowledgements

We would like to thank all the anonymous referees for their fruitful comments that helped to improve this paper a lot.

References

  1. 1.
    Addario-Berry, L., Devroye, L., Janson, S.: Sub-gaussian tail bounds for the width and height of conditioned Galton–Watson trees. Ann. Probab. 41(2), 1072–1087, 03 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Athreya, K.B., Ney, P.E.: Branching Processes. Dover Publications, Inc., Mineola, NY, 2004. Reprint of the 1972 original [Springer, New York; MR0373040]Google Scholar
  3. 3.
    Bergounioux, M.: Mathematical analysis of a inf-convolution model for image processing. J. Optim. Theory Appl. 168(1), 1–21 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bergounioux, M.: Second order decomposition model for image processing: numerical experimentation. In: Bergounioux, G., Peyré, M., Schnörr, C., Caillau, J.-B., Haberkorn, T. (eds) Variational Methods In Imaging and Geometric Control, vol. 18 of Radon Series on Computational and Applied Mathematics, pp. 5–34. Degruyter (2017)Google Scholar
  5. 5.
    Caselles, V., Monasse, P.: Grain filters. J. Math. Imaging Vision 17(3), 249–270 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chambon, S.: Detection of points of interest for geodesic contours: application on road images for crack detection. In: International Joint Conference on Computer Vision Theory and Applications, VISAPP, p. sp (2011)Google Scholar
  7. 7.
    Coudray, N., Karathanou, A., Chambon, S.: Multi-resolution approach for fine structure extraction: application and validation on road images. In: International Joint Conference on Computer Vision Theory and Applications, VISAPP, p. sp (2010)Google Scholar
  8. 8.
    Coupier, D., Desolneux, A., Ycart, B.: Image denoising by statistical area thresholding. J. Math. Imaging Vis. 22, 183–197 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. Int. J. Comput. Vis. 40(1), 7–23 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach, vol. 34. Springer, London (2007)Google Scholar
  11. 11.
    Dwass, M.: The total progeny in a branching process. J. Appl. Probab. 6, 682–686 (1969)CrossRefzbMATHGoogle Scholar
  12. 12.
    Linda, C.H., Jiji, G.W.: Crack detection in X-ray images using fuzzy index measure. Appl. Soft Comput. 11(4), 3571–3579 (2011)CrossRefGoogle Scholar
  13. 13.
    Masnou, S., Morel, J.-M.: Image restoration involving connectedness. In: Sixth International Workshop on Digital Image Processing and Computer Graphics, pp. 84–95. International Society for Optics and Photonics (1998)Google Scholar
  14. 14.
    Maurício, A., Figueiredo, C., Pereira, M.F.C., Alves, C., Bergounioux, M., Rozenbaum, O.: Assessment of stone heritage decay by X-ray computed microtomography: I-a case study of portuguese braga granite. Microsc. Microanal. 21(S6), 160–161 (2015)CrossRefGoogle Scholar
  15. 15.
    Moysan, J., Benoist, P., Corneloup, G., Magnin, I.: Crack-like defect detection and sizing from image segmentation through co-occurrence matrix analysis. Ultrasonics 30(6), 359–363 (1992)CrossRefGoogle Scholar
  16. 16.
    Nguyen, T.S., Begot, S., Duculty, F., Avila, M.: Free-form anisotropy: a new method for crack detection on pavement surface images. In: 2011 18th IEEE International Conference on Image Processing, pp. 1069–1072. IEEE (2011)Google Scholar
  17. 17.
    Oliveira, H., Correia, P.L.: Automatic crack detection on road imagery using anisotropic diffusion and region linkage. In: Signal Processing Conference, 2010 18th European, pp. 274–278. IEEE (2010)Google Scholar
  18. 18.
    Penrose, M.D.: Continuum percolation and Euclidian minimal spanning tree in high dimensions. Ann. Appl. Probab. 6(2), 528–544 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Popov, A.T.: Approximate connectivity and mathematical morphology. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds) Mathematical Morphology and its Applications to Image and Signal Processing, pp. 149–158. Springer, Boston (2000)Google Scholar
  20. 20.
    Pritchard, A.J., Sangwine, S.J., Horne, R.E.N.: Area thresholding and silhouette extraction of simple coloured objects using hue. In: Morphological and Nonlinear Image Processing Techniques, IEE Colloquium on, pp. 3–1. IET (1993)Google Scholar
  21. 21.
    Rozenbaum, O., Bergounioux, M., Maurício, A., Figueiredo, C., Alves, C., Barbanson, L.: Versatile three-dimensional denoising and segmentation method of X-ray tomographic images: applications to geomaterials characterizations. Preprint (2016)Google Scholar
  22. 22.
    Shi, Z.: Branching random walks. Springer 2015. École d’Été de Probabilités de Saint-Flour XLII (2012)Google Scholar
  23. 23.
    Subirats, P., Dumoulin, J., Legeay, V., Barba, D.: Automation of pavement surface crack detection using the continuous wavelet transform. In: 2006 International Conference on Image Processing, pp. 3037–3040. IEEE (2006)Google Scholar
  24. 24.
    Tenenbaum, J.M., Witkin, A.P.: On the role of structure in vision. In: Human and Machine Vision, pp. 481–543 (1983)Google Scholar
  25. 25.
    Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications, pp. 22–27. In: First Workshop on Mathematical Morphology and its Applications to, Signal Processing (1993)Google Scholar
  26. 26.
    Yamaguchi, T., Nakamura, S., Saegusa, R., Hashimoto, S.: Image-based crack detection for real concrete surfaces. IEEJ Trans. Electr. Electron. Eng. 3(1), 128–135 (2008)CrossRefGoogle Scholar
  27. 27.
    Zhu, S.-C.: Embedding gestalt laws in markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1170–1187 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratoire MAPMO, CNRS, UMR 7349, Fédération Denis Poisson, FR 2964Université d’OrléansOrléans Cedex 2France

Personalised recommendations