Skip to main content
Log in

Automatic Choice of the Threshold of a Grain Filter via Galton–Watson Trees: Application to Granite Cracks Detection

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The goal of this paper is the presentation of a post-processing method allowing to remove impulse noise in binary images, while preserving thin structures. We use a grain filter. We propose a method to automatically determine the required threshold using Galton–Watson processes. We present numerical results and a complete analysis on a synthetic image. We end the numerical section considering a specific application to granite samples crack detection: Here we deal with X-tomography images that have been binarized via preprocessing techniques and we want to remove residual impulse noise while keeping cracks and micro-cracks structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. We thank Olivier Rozenbaum, ISTO, Université d’Orléans, CNRS, BRGM.

References

  1. Addario-Berry, L., Devroye, L., Janson, S.: Sub-gaussian tail bounds for the width and height of conditioned Galton–Watson trees. Ann. Probab. 41(2), 1072–1087, 03 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Athreya, K.B., Ney, P.E.: Branching Processes. Dover Publications, Inc., Mineola, NY, 2004. Reprint of the 1972 original [Springer, New York; MR0373040]

  3. Bergounioux, M.: Mathematical analysis of a inf-convolution model for image processing. J. Optim. Theory Appl. 168(1), 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergounioux, M.: Second order decomposition model for image processing: numerical experimentation. In: Bergounioux, G., Peyré, M., Schnörr, C., Caillau, J.-B., Haberkorn, T. (eds) Variational Methods In Imaging and Geometric Control, vol. 18 of Radon Series on Computational and Applied Mathematics, pp. 5–34. Degruyter (2017)

  5. Caselles, V., Monasse, P.: Grain filters. J. Math. Imaging Vision 17(3), 249–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambon, S.: Detection of points of interest for geodesic contours: application on road images for crack detection. In: International Joint Conference on Computer Vision Theory and Applications, VISAPP, p. sp (2011)

  7. Coudray, N., Karathanou, A., Chambon, S.: Multi-resolution approach for fine structure extraction: application and validation on road images. In: International Joint Conference on Computer Vision Theory and Applications, VISAPP, p. sp (2010)

  8. Coupier, D., Desolneux, A., Ycart, B.: Image denoising by statistical area thresholding. J. Math. Imaging Vis. 22, 183–197 (2005)

    Article  MathSciNet  Google Scholar 

  9. Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. Int. J. Comput. Vis. 40(1), 7–23 (2000)

    Article  MATH  Google Scholar 

  10. Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach, vol. 34. Springer, London (2007)

  11. Dwass, M.: The total progeny in a branching process. J. Appl. Probab. 6, 682–686 (1969)

    Article  MATH  Google Scholar 

  12. Linda, C.H., Jiji, G.W.: Crack detection in X-ray images using fuzzy index measure. Appl. Soft Comput. 11(4), 3571–3579 (2011)

    Article  Google Scholar 

  13. Masnou, S., Morel, J.-M.: Image restoration involving connectedness. In: Sixth International Workshop on Digital Image Processing and Computer Graphics, pp. 84–95. International Society for Optics and Photonics (1998)

  14. Maurício, A., Figueiredo, C., Pereira, M.F.C., Alves, C., Bergounioux, M., Rozenbaum, O.: Assessment of stone heritage decay by X-ray computed microtomography: I-a case study of portuguese braga granite. Microsc. Microanal. 21(S6), 160–161 (2015)

    Article  Google Scholar 

  15. Moysan, J., Benoist, P., Corneloup, G., Magnin, I.: Crack-like defect detection and sizing from image segmentation through co-occurrence matrix analysis. Ultrasonics 30(6), 359–363 (1992)

    Article  Google Scholar 

  16. Nguyen, T.S., Begot, S., Duculty, F., Avila, M.: Free-form anisotropy: a new method for crack detection on pavement surface images. In: 2011 18th IEEE International Conference on Image Processing, pp. 1069–1072. IEEE (2011)

  17. Oliveira, H., Correia, P.L.: Automatic crack detection on road imagery using anisotropic diffusion and region linkage. In: Signal Processing Conference, 2010 18th European, pp. 274–278. IEEE (2010)

  18. Penrose, M.D.: Continuum percolation and Euclidian minimal spanning tree in high dimensions. Ann. Appl. Probab. 6(2), 528–544 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Popov, A.T.: Approximate connectivity and mathematical morphology. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds) Mathematical Morphology and its Applications to Image and Signal Processing, pp. 149–158. Springer, Boston (2000)

  20. Pritchard, A.J., Sangwine, S.J., Horne, R.E.N.: Area thresholding and silhouette extraction of simple coloured objects using hue. In: Morphological and Nonlinear Image Processing Techniques, IEE Colloquium on, pp. 3–1. IET (1993)

  21. Rozenbaum, O., Bergounioux, M., Maurício, A., Figueiredo, C., Alves, C., Barbanson, L.: Versatile three-dimensional denoising and segmentation method of X-ray tomographic images: applications to geomaterials characterizations. Preprint (2016)

  22. Shi, Z.: Branching random walks. Springer 2015. École d’Été de Probabilités de Saint-Flour XLII (2012)

  23. Subirats, P., Dumoulin, J., Legeay, V., Barba, D.: Automation of pavement surface crack detection using the continuous wavelet transform. In: 2006 International Conference on Image Processing, pp. 3037–3040. IEEE (2006)

  24. Tenenbaum, J.M., Witkin, A.P.: On the role of structure in vision. In: Human and Machine Vision, pp. 481–543 (1983)

  25. Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications, pp. 22–27. In: First Workshop on Mathematical Morphology and its Applications to, Signal Processing (1993)

  26. Yamaguchi, T., Nakamura, S., Saegusa, R., Hashimoto, S.: Image-based crack detection for real concrete surfaces. IEEJ Trans. Electr. Electron. Eng. 3(1), 128–135 (2008)

    Article  Google Scholar 

  27. Zhu, S.-C.: Embedding gestalt laws in markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1170–1187 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank all the anonymous referees for their fruitful comments that helped to improve this paper a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maïtine Bergounioux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, R., Bergounioux, M. & Debs, P. Automatic Choice of the Threshold of a Grain Filter via Galton–Watson Trees: Application to Granite Cracks Detection. J Math Imaging Vis 60, 50–69 (2018). https://doi.org/10.1007/s10851-017-0743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0743-3

Keywords

Mathematics Subject Classification

Navigation