Journal of Mathematical Imaging and Vision

, Volume 59, Issue 1, pp 123–135 | Cite as

Analysis of Noisy Digital Contours with Adaptive Tangential Cover

  • Phuc Ngo
  • Isabelle Debled-Rennesson
  • Bertrand Kerautret
  • Hayat Nasser
Article
  • 115 Downloads

Abstract

The notion of tangential cover, based on maximal segments, is a well-known tool to study the geometrical characteristics of a discrete curve. However, it is not robust to noise, while extracted contours from digital images typically contain noise, and this makes the geometric analysis tasks on such contours difficult. To tackle this issue, we investigate in this paper a discrete structure, named adaptive tangential cover (ATC), which is based on the notion of tangential cover and on a local noise estimator. More specifically, the ATC is composed of maximal segments with different widths deduced from the local noise values estimated at each point of the contour. Furthermore, a parameter-free algorithm is also presented to compute ATC. This study leads to the proposal of several applications of ATC on noisy digital contours: dominant point detection, contour length estimator, tangent/normal estimator, detection of convex and concave parts. An extension of ATC to 3D curves is also proposed in this paper. The experimental results demonstrate the efficiency of this new notion.

Keywords

Maximal blurred segment Noise level Geometrical parameters Dominant points Tangent Normal vectors Length contour estimator Contour concave/convexe parts 

References

  1. 1.
    Reveillès, J.-P.: Géométrie discrète, calculs en nombre entiers et algorithmique, thèse d’état. Université Louis Pasteur, Strasbourg (1991)Google Scholar
  2. 2.
    Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: application to the curvature. In: DGCI, vol. 1568 of LNCS, pp. 31–40 (1999)Google Scholar
  3. 3.
    Feschet, F.: Canonical representations of discrete curves. Pattern Anal. Appl. 8(1–2), 84–94 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lachaud, J.: Digital shape analysis with maximal segments. In: Applications of Discrete Geometry and Mathematical Morphology—First International Workshop, WADGMM 2010, Istanbul, Turkey, pp. 14–27 (2010)Google Scholar
  5. 5.
    Kerautret, B., Lachaud, J.-O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2379–2392 (2012)CrossRefGoogle Scholar
  6. 6.
    Kerautret, B., Lachaud, J.-O.: Meaningful scales detection: an unsupervised noise detection algorithm for digital contours. Image Process. Line 4, 98–115 (2014)CrossRefGoogle Scholar
  7. 7.
    Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimations from noisy discretizations. In: Proceedings of the International Conference on DGCI, vol. 4992 of LNCS, Springer, pp. 370–379 (2008)Google Scholar
  8. 8.
    Cuel, L., Lachaud, J., Mérigot, Q., Thibert, B.: Robust geometry estimation using the generalized voronoi covariance measure. SIAM J. Imaging Sci. 8(2), 1293–1314 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)CrossRefMATHGoogle Scholar
  10. 10.
    Nguyen, T.P., Debled-Rennesson, I.: On the local properties of digital curves. Int. J. Shape Model. 14(2), 105–125 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recognit. 44(1), 32–44 (2011)CrossRefMATHGoogle Scholar
  12. 12.
    Ngo, P., Nasser, H., Debled-Rennesson, I.: Efficient dominant point detection based on discrete curve structure. In: International Workshop on Combinatorial Image Analysis IWCIA), Kolkata, India, November, vol. 9448 of LNCS (2015)Google Scholar
  13. 13.
    Nguyen, T.P., Kerautret, B., Debled-Rennesson, I., Lachaud, J.: Unsupervised, fast and precise recognition of digital arcs in noisy images. In: Computer Vision and Graphics—International Conference, ICCVG 2010, Warsaw, Poland, September, vol. 6374 of LNCS (2010)Google Scholar
  14. 14.
    Nguyen, T.P., Debled-Rennesson, I.: Decomposition of a curve into arcs and line segments based on dominant point detection. In: Image Analysis—17th Scandinavian Conference, SCIA, vol. 6688 of LNCS, pp. 794–805 (2011)Google Scholar
  15. 15.
    Ngo, P., Nasser, H., Debled-Rennesson, I., Kerautret, B.: Adaptive tangential cover for noisy digital contours. In: Discrete Geometry for Computer Imagery—19th IAPR International Conference, DGCI 2016, Nantes, France, vol. 9647 of LNCS, pp. 439–451 (2016)Google Scholar
  16. 16.
    Kerautret, B., Lachaud, J.-O., Said, M.: Meaningful thickness detection on polygonal curve. In: Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, SciTePress, pp. 372–379 (2012)Google Scholar
  17. 17.
    Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vis. Comput. 25(10), 1572–1587 (2007)CrossRefGoogle Scholar
  18. 18.
    Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Analysis and comparative evaluation of discrete tangent estimators. In: Andrs, E., Damiand, G., Lienhardt, P. (eds.) Proceedings of the International Conference on Discrete Geometry for Computer Imagery (DGCI’2005), Poitiers, France, vol. 3429 of LNCS, Springer, pp. 140–251 (2005)Google Scholar
  19. 19.
    Faure, A., Buzer, L., Feschet, F.: Tangential cover for thick digital curves. Pattern Recognit. 42(10), 2279–2287 (2009)CrossRefMATHGoogle Scholar
  20. 20.
    Coeurjolly, D., Kerautret, B., Lachaud, J.-O.: Extraction of connected region boundary in multidimensional images. Image Process. Line 4, 30–43 (2014)CrossRefGoogle Scholar
  21. 21.
    Kanungo, T.: Document degradation models and a methodology for degradation model validation. Ph.D. thesis, University of Washington (1996)Google Scholar
  22. 22.
    DGtalTools project: Tools associated with dgtal library. https://github.com/DGtal-team/DGtalTools
  23. 23.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)CrossRefGoogle Scholar
  24. 24.
    DGtal: Digital geometry tools and algorithms library. http://libdgtal.org
  25. 25.
    Dörksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. In: Geometric Properties for Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 145–160. Springer (2006)Google Scholar
  26. 26.
    Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and length estimation of 3d discrete curves. In: Digital and Image Geometry, Advanced Lectures [based on a winter school held at Dagstuhl Castle, Germany in December 2000], pp. 299–317 (2000)Google Scholar
  27. 27.
    Imagene, Generic digital Image library, http://gforge.liris.cnrs.frs/projects/imagene
  28. 28.
    Adaptive tangential cover for noisy digital contours: Online demonstration. http://ipol-geometry.loria.fr/~kerautre/ipol_demo/ATC_IPOLDemo/

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.LoriaVandoeuvre-lès-NancyFrance

Personalised recommendations