Skip to main content
Log in

Approximation of Integral Operators Using Product-Convolution Expansions

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We consider a class of linear integral operators with impulse responses varying regularly in time or space. These operators appear in a large number of applications ranging from signal/image processing to biology. Evaluating their action on functions is a computationally intensive problem necessary for many practical problems. We analyze a technique called product-convolution expansion: The operator is locally approximated by a convolution, allowing to design fast numerical algorithms based on the fast Fourier transform. We design various types of expansions, provide their explicit rates of approximation and their complexity depending on the time-varying impulse response smoothness. This analysis suggests novel wavelet-based implementations of the method with numerous assets such as optimal approximation rates, low complexity and storage requirements as well as adaptivity to the kernels regularity. The proposed methods are an alternative to more standard procedures such as panel clustering, cross-approximations, wavelet expansions or hierarchical matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. With the terminology of [7], the name product-convolution would have been convolution-product and vice-versa. The name product-convolution seems more appropriate to describe a product followed by a convolution.

  2. This was also the basic idea in our recent paper [20].

References

  1. Arigovindan, M., Shaevitz, J., McGowan, J., Sedat, J.W., Agard, D.A.: A parallel product-convolution approach for representing the depth varying point spread functions in 3D widefield microscopy based on principal component analysis. Opt. Express 18(7), 6461–6476 (2010)

    Article  Google Scholar 

  2. Beylkin, G.: On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal. 29(6), 1716–1740 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Appl. Comput. Harmon. Anal. 44(2), 141–183 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Bezhaev, A.Y., Vasilenko, V.A.: Variational Theory of Splines. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  5. Bigot, J., Escande, P., Weiss, P.: Estimation of linear operators from scattered impulse responses. arXiv preprint arXiv:1610.04056 (2016)

  6. Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem. 27(5), 405–422 (2003)

    Article  MATH  Google Scholar 

  7. Busby, R., Smith, H.: Product-convolution operators and mixed-norm spaces. Trans. Am. Math. Soc. 263(2), 309–341 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christensen, O.: An Introduction to Frames and Riesz Bases. Springer, New York (2013)

    MATH  Google Scholar 

  9. Chu, M., Funderlic, R., Plemmons, R.: Structured low rank approximation. Linear Algebra Appl. 366, 157–172 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, vol. 40. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  11. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Harmonic analysis of the space BV. Rev. Mat. Iberoam. 19(1), 235–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen, A., Daubechies, I., Vial, P.: Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1(1), 54–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dahmen, W., Prößdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations II: matrix compression and fast solution. Adv. Comput. Math. 1(3), 259–335 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations: I stability and convergence. Math. Z. 215(1), 583–620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. pur. appl. math. 41(7), 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daubechies, I.: Ten Lectures on Wavelets, vol. 61. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  17. Denis, L., Thiébaut, E., Soulez, F., Becker, J.-M., Mourya, R.: Fast approximations of shift-variant blur. Int. J. Comput. Vis. 115(3), 253–278 (2015)

    Article  MathSciNet  Google Scholar 

  18. DeVore, R.A.: Nonlinear approximation. Acta. Numer. 7, 51–150 (1998)

    Article  MATH  Google Scholar 

  19. DeVore, R.A., Lorentz, G.G.: Constructive Approximation, vol. 303. Springer, Berlin (1993)

    MATH  Google Scholar 

  20. Escande, P., Weiss, P.: Sparse wavelet representations of spatially varying blurring operators. SIAM J. Imaging Sci. 8(4), 2976–3014 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flicker, R.C., Rigaut, F.J.: Anisoplanatic deconvolution of adaptive optics images. J. Opt. Soc. Am. A 22(3), 504–513 (2005)

    Article  Google Scholar 

  22. Gilad, E., Von Hardenberg, J.: A fast algorithm for convolution integrals with space and time variant kernels. J. Comput. Phys. 216(1), 326–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Griffiths, L.J., Smolka, F.R., Trembly, L.D.: Adaptive deconvolution: a new technique for processing time-varying seismic data. Geophysics 42(4), 742–759 (1977)

    Article  Google Scholar 

  24. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Helemskii, A.Y.: Lectures and Exercises on Functional Analysis, vol. 233. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  27. Hirsch, M., Sra, S., Scholkopf, B., Harmeling, S.: Efficient filter flow for space-variant multiframe blind deconvolution. In: Proc. CVPR IEEE (2010)

  28. Hrycak, T., Das, S., Matz, G., Feichtinger, H.G.: Low complexity equalization for doubly selective channels modeled by a basis expansion. IEEE Trans. Signal Process. 58(11), 5706–5719 (2010)

    Article  MathSciNet  Google Scholar 

  29. Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  30. Kozek, W., Pfander, G.E.: Identification of operators with bandlimited symbols. SIAM J. Math. Anal. 37(3), 867–888 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999)

    MATH  Google Scholar 

  32. Meyer, Y.: Wavelets and Operators, vol. 1. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  33. Miraut, D., Portilla, J.: Efficient shift-variant image restoration using deformable filtering (Part I). EURASIP J. Adv. Signal Process. 2012, 100 (2012)

    Article  Google Scholar 

  34. Nagy, J.G., O’Leary, D.P.: Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput. 19(4), 1063–1082 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432(1), 70–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pinkus, A.: N-Widths in Approximation Theory, vol. 7. Springer, Berlin (2012)

    MATH  Google Scholar 

  37. Roh, J.C., Rao, B.D.: An efficient feedback method for MIMO systems with slowly time-varying channels. In: IEEE WCNC, vol. 2, pp. 760–764. IEEE (2004)

  38. Sawchuk, A.A.: Space-variant image motion degradation and restoration. Proc. IEEE 60(7), 854–861 (1972)

    Article  Google Scholar 

  39. Stockham, T.G.: High-speed convolution and correlation. In: Proceedings of the April 26–28, 1966, Spring joint computer conference, pp. 229–233. ACM (1966)

  40. Trussell, J., Fogel, S.: Identification and restoration of spatially variant motion blurs in sequential images. IEEE Trans. Image Process. 1(1), 123–126 (1992)

    Article  Google Scholar 

  41. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing. Part I—theory. IEEE Trans. Signal Process. 41(2), 821–833 (1993)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We began investigating a much narrower version of the problem in a preliminary version of [20]. An anonymous reviewer however suggested that it would be more interesting to make a general analysis and we therefore discarded the aspects related to product-convolution expansions from [20]. We thank the reviewer for motivating us to initiate this research. We also thank Sandrine Anthoine, Jérémie Bigot, Caroline Chaux, Jérôme Fehrenbach, Hans Feichtinger, Clothilde Mélot, Anh-Tuan Nguyen and Bruno Torrésani for fruitful discussions on related matters. The authors are particularly grateful to Hans Feichtinger for his numerous feedbacks on a preliminary version of this paper and for suggesting the name product-convolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Escande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escande, P., Weiss, P. Approximation of Integral Operators Using Product-Convolution Expansions. J Math Imaging Vis 58, 333–348 (2017). https://doi.org/10.1007/s10851-017-0714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0714-8

Keywords

Mathematics Subject Classification

Navigation