Skip to main content
Log in

Digital Surface of Revolution with Hand-Drawn Generatrix

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper we present a simple method to create general 3D digital surfaces of revolution based on a 2D implicit curve of revolution (therefore not limited to a circle) and a hand-drawn generatrix. Our method can handle any sequence of Euclidean 2D points, which represents a curve, as generatrix. One can choose the topology of the surface that may have 1-tunnels, 0-tunnels or no tunnels with applications in 3D printing for instance. An online tool that illustrates the method is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Salomon, D.: Curves and Surfaces for Computer Graphics. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Andres, E., Largeteau-Skapin, G.: Digital surfaces of revolution made simple. In: Discrete Geometry for Computer Imagery: 19th IAPR International Conference, DGCI 2016, Nantes, France, April 18–20, 2016. Lecture Notes in Computer Science, Vol. 9647 , pp. 244–255. Springer (2016)

  3. Stolte, N., Kaufman, A.E.: Novel techniques for robust voxelization and visualization of implicit surfaces. Gr. Models 63(6), 387–412 (2001)

    Article  MATH  Google Scholar 

  4. Yongsheng, L., Stolte, N.: Robust voxelization based ray tracing of implicit surfaces. In: Proceedings of the 6th Sixth IASTED Honolulu, Hawaii (USA), pp. 177–180 (2003)

  5. Bhowmick, P., Bera, S., Bhattacharya, B.B.: Digital circularity and its applications. In: Wiederhold, P., Barneva, R.P. (eds.) Combinatorial Image Analysis, 13th International Workshop, IWCIA Playa del Carmen, Mexico, November 24–27, 2009. Lecture Notes in Computer Science, vol. 5852, pp. 1–15. Springer (2009)

  6. Kumar, G., Sharma, N.K., Bhowmick, P.: Wheel-throwing in digital space using number-theoretic approach. IJART 4(2), 196–215 (2011)

    Article  Google Scholar 

  7. Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)

    Article  MATH  Google Scholar 

  8. Bera, S., Bhowmick, P., Bhattacharya, B.B.: On the characterization of absentee-voxels in a spherical surface and volume of revolution in \(\mathbb{Z}^{3}\). J. Math. Imaging Vis. 56(3), 1–19 (2016)

  9. Andres, E.: Discrete circles, rings and spheres. Comput. Gr. 18(5), 695–706 (1994)

    Article  Google Scholar 

  10. Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Gr. 3(1), 75–86 (1997)

    Article  Google Scholar 

  11. Andres, E., Roussillon, T.: Analytical description of digital circles. In: 16th DGCI, Nancy (France). LNCS, vol. 6607, pp. 235–246. Springer (2011)

  12. Toutant, J., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital surfaces in arbitrary dimensions. In: 18th DGCI, Siena (Italy). LNCS, vol. 8668, pp. 332–343. Springer (2014)

  13. Andres, E.: Digital Analytical Geometry: How Do I Define a Digital Analytical Object? In: Combinatorial Image Analysis: 17th International Workshop, IWCIA 2015, Kolkata, India, November 24–27, 2015. Lecture Notes in Computer Science, Vol. 9448, pp. 3–17. Springer International Publishing (2015)

  14. Laine, S.: A topological approach to voxelization. Comput. Gr. Forum 32(4), 77–86 (2013)

    Article  Google Scholar 

  15. Toutant, J., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties. Discret. Appl. Math. 161(16–17), 2662–2677 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heijmans, H.: Morphological discretization. In: Eckhardt, U (eds) Geometrical Problem in Image Processing. Akademie Verlag, Berlin, pp. 99–106 (1991)

  17. Heijmans, H., Toet, A.: Morphological sampling. Gr. Image Process. Image Underst. 54(3), 384–400 (1991)

    Article  MATH  Google Scholar 

  18. Andres, E.: The supercover of an m-flat is a discrete analytical object. Theor. Comput. Sci. 406(1–2), 8–14 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stelldinger, P., Köthe, U.: Towards a general sampling theory for shape preservation. Image Vis. Comput. 23(2), 237–248 (2005)

    Article  MATH  Google Scholar 

  20. de Figueiredo, L.H.: Adaptive sampling of parametric curves. Gr. Gems V 5, 173–178 (1995)

    Article  Google Scholar 

  21. Debled-Rennesson, I., Reveillès, J.: A linear algorithm for segmentation of digital curves. IJPRAI 9(4), 635–662 (1995)

    Google Scholar 

  22. Breton, R., Sivignon, I., Dupont, F., Andres, E.: Towards an invertible euclidean reconstruction of a discrete object. In: 11th DGCI Naples (Italy). LNCS, Vol. 2886 , pp. 246–256. Springer (2003)

  23. Sivignon, I., Breton, R., Dupont, F., Andres, E.: Discrete analytical curve reconstruction without patches. Image Vis. Comput. 23(2), 191–202 (2005)

    Article  Google Scholar 

  24. Duff, T.: Interval arithmetic recursive subdivision for implicit functions and constructive solid geometry. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1992, pp. 131–138 (1992)

Download references

Acknowledgements

This work has been supported by the CPER 2015-2020, NUMERIC Program and FEDER-FSE MODEGA Project of the Nouvelle-Aquitaine Region, France. we would like to thank Aurélie Mourier, http://www.aureliemourier.net/, a local artist, who worked with us on the online tool and on creating the chess pieces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Andres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andres, E., Richaume, L. & Largeteau-Skapin, G. Digital Surface of Revolution with Hand-Drawn Generatrix. J Math Imaging Vis 59, 40–51 (2017). https://doi.org/10.1007/s10851-017-0708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0708-6

Keywords

Navigation