Abstract
This paper presents a computational model to recover the most likely interpretation of the 3D scene structure from a planar image, where some objects may occlude others. The estimated scene interpretation is obtained by integrating some global and local cues and provides both the complete disoccluded objects that form the scene and their ordering according to depth. Our method first computes several distal scenes which are compatible with the proximal planar image. To compute these different hypothesized scenes, we propose a perceptually inspired object disocclusion method, which works by minimizing the Euler’s elastica as well as by incorporating the relatability of partially occluded contours and the convexity of the disoccluded objects. Then, to estimate the preferred scene, we rely on a Bayesian model and define probabilities taking into account the global complexity of the objects in the hypothesized scenes as well as the effort of bringing these objects in their relative position in the planar image, which is also measured by an Euler’s elastica-based quantity. The model is illustrated with numerical experiments on, both, synthetic and real images showing the ability of our model to reconstruct the occluded objects and the preferred perceptual order among them. We also present results on images of the Berkeley dataset with provided figure-ground ground-truth labeling.
This is a preview of subscription content, access via your institution.

























References
Arias, P., Facciolo, G., Caselles, V., Sapiro, G.: A variational framework for exemplar-based image inpainting. Int. J. Comput. Vis. 93, 319–347 (2011)
Aujol, J.F., Ladjal, S., Masnou, S.: Exemplar-based inpainting from a variational point of view. SIAM J. Math. Anal. 42(3), 1246–1285 (2010)
Ballester, C., Bertalmío, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. IP 10(8), 1200–1211 (2001)
Bellettini, G., Dal Maso, G., Paolini, M.: Semicontinuity and relaxation properties of a curvature depending functional in 2d. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 20(2), 247–297 (1993)
Burge, J., Fowlkes, C., Banks, M.: Natural-scene statistics predict how the figure-ground cue of convexity affects human depth perception. J. Neurosci. 30(21), 7269–7280 (2010)
Cao, F., Gousseau, Y., Masnou, S., Prez, P.: Geometrically guided exemplar-based inpainting. SIAM J. Imaging Sci. 4(4), 1143–1179 (2011)
Carrigan, S., Palmer, E., Kellman, P.: Differentiating local and global processes in amodal completion through dot localization. J. Vis. 15(12), 1123–1123 (2015)
Chan, T., Shen, J.H.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2001)
Chan, T., Shen, J.H.: Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 12(4), 436–449 (2001)
Chen, Y., Sundaram, H.: Estimating complexity of 2d shapes. In: IEEE 7th Workshop on Multimedia Signal Processing, pp. 1–4 (2005)
Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)
Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based inpainting. IEEE Trans. IP 13(9), 1200–1212 (2004)
Demanet, L., Song, B., Chan, T.: Image inpainting by correspondence maps: a deterministic approach. Appl. Comput. Math. 1100, 217–250 (2003)
Esedoglu, S., Ruuth, S.J., Tsai, R.: Threshold dynamics for high order geometric motions. Interfaces Free Bound. 10(3), 263–282 (2008)
Fowlkes, C., Martin, D., Malik, J.: Local figure/ground cues are valid for natural images. J. Vis. 7(8), 1–9 (2007)
Froyen, V., Kogo, N., Singh, M., Feldman, J.: Modal and amodal shape completion. J. Vis. 15(12), 321–321 (2015)
Gerbino, W., Salmaso, D.: The effect of amodal completion on visual matching. Acta Psychol. 65(1), 25–46 (1987)
Grompone von Gioi, R.: Toward a computational theory of perception. apcap 2009 p. 49 (2009)
von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: a line segment detector. Image Process. Line 2, 35–55 (2012)
Grzibovskis, R., Heintz, A.: A convolution-thresholding scheme for the willmore flow. Tech. Rep. 34
Li, H., Cai, J., Nguyen, T.N.A., Zheng, J.: A benchmark for semantic image segmentation. In: ICME (2013)
Hayashi, T., Sasaki, M.: Contour completion of partly occluded skew-symmetry objects. In: 2014 IEEE International Symposium on Multimedia (ISM), pp. 90–93 (2014)
van der Helm, P.: Bayesian confusions surrounding simplicity and likelihood in perceptual organization. Acta Psychol. 138(3), 337–346 (2011)
Kang, S.H., Zhu, W., Shen, J.: Illusory shapes via corner fusion. SIAM J. Imaging Sci. 7(4), 1907–1936 (2014)
Kanizsa, G.: Amodal completion and shrinking of visual fields. Studia Psychol. 14, 208–210 (1972)
Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger, New York (1979)
Kanizsa, G.: Seeing and thinking. Acta Psychol. 59(1), 23–33 (1985)
Kanizsa, G.: Vedere et pensare. Il Mulino, Bologna (1991)
Kawai, N., Sato, T., Yokoya, N.: Image inpainting considering brightness change and spatial locality of textures and its evaluation. In: Advances in Image and Video Technology, pp. 271–282 (2009)
Kellman, P., Shipley, T.: A theory of visual interpolation in object perception. Cogn. Psychol. 23(2), 141–221 (1991)
Knill, D., Kersten, D., Yuille, A.: Introduction: a bayesian formulation of visual perception. In: Knill, D., Richards, W. (eds.) Perception as Bayesian Inference. Cambridge University Press, Cambridge (1996)
Koffka, K.: Principles of Gestalt Psychology. Routledge and Kegan Paul, London (1935)
Leeuwenberg, E., van der Helm, P.A.: Structural Information Theory. The Simplicity of Visual Form. Cambridge University Press, Cambridge (2012)
Leung, T., Malik, J.: Contour continuity in region based image segmentation. In: Computer Vision ECCV, pp. 544–559. Springer (1998)
van Lier, R., van der Helm, P., Leeuwenberg, E.: Integrating global and local aspects of visual occlusion. Perception 23, 883–903 (1994)
Mansfield, A., Prasad, M., Rother, C., Sharp, T., Kohli, P., van Gool, L.: Transforming image completion. In: Proceedings of BMVC, pp. 121.1–121.11 (2011)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th ICCV, vol. 2, pp. 416–423 (2001)
Masnou, S.: Disocclusion: a variational approach using level lines. IEEE Trans. IP 11(2), 68–76 (2002)
Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. of IEEE ICIP (1998)
Meijster, A., Roerdink, J.B., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. Mathematical Morphology and Its Applications to Image and Signal Processing, pp. 331–340. Springer, New York (2002)
Merriman, B., Bence, J., Osher, S.: Diffusion generated motion by mean curvature. In: J.E. Taylor, editor, Computational Crystal Growers Workshop, pp. 73–83. American Mathematical Society, Providence, Rhode Island (1992). Also available as UCLA CAM Report 92-18, April1992
Michotte, A., Thines, G., Crabbé, G.: Amodal completion of perceptual structures. Michottes Experimental Phenomenology of Perception, pp. 140–167. Erlbaum, Hillsdale (1991)
Moravec, L., Beck, J.: Amodal completion: simplicity is not the explanation. Bull. Psychon. Soc. 24(4), 269–272 (1986)
Mumford, D.: Elastica and computer vision. Algebraic Geometry and Its Applications, pp. 491–506. Springer, New York (1994)
Murray, M., Foxe, D., Javitt, D., Foxe, J.: Setting boundaries: brain dynamics of modal and amodal illusory shape completion in humans. J. Neurosci. 24(31), 6898–6903 (2004)
Nitzberg, M., Mumford, D., Shiota, T.: Filtering, Segmentation, and Depth. Lecture Notes in Computer Science, vol. 662. Springer, Berlin (1993)
Otero, I.R., Delbracio, M.: Computing an exact Gaussian scale-space. Image Process. Line 6, 8–26 (2016)
Ringach, D., Shapley, R.: Spatial and temporal properties of illusory contours and amodal boundary completion. Vis. Res. 36(19), 3037–3050 (1996)
Rubin, N.: The role of junctions in surface completion and contour matching. Perception 30(3), 339–366 (2001)
Esedoglu, S., S.R., Tsai, R.: Threshold dynamics for shape reconstruction and disocclusion. In: Proc of IEEE ICIP, vol 2, pp. 502–505 (2005)
Sekuler, A.B.: Local and global minima in visual completion: effects of symmetry and orientation. Perception 23, 529–529 (1994)
Sethian, J.A.: Curvature and the evolution of fronts. Commun. Math. Phys. 101(4), 487–499 (1985)
Singh, M., Hoffman, D.: Completing visual contours: the relationship between relatability and minimizing inflections. Percept. Psychophys. 61(5), 943–951 (1999)
Thornber, K.K., Williams, L.R.: Characterizing the distribution of completion shapes with corners using a mixture of random processes. Pattern Recogn. 33(4), 543–553 (2000)
Van Lier, R., Van der Helm, P., Leeuwenberg, E.: Competing global and local completions in visual occlusion. J. Exp. Psychol.: Hum. Percept. Perform. 21(3), 571 (1995)
Van Lier, R., Leeuwenberg, E., Van der Helm, P.: Multiple completions primed by occlusion patterns. Perception 24, 727–727 (1995)
Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt, II [Investigations in Gestalt Theory, II: Laws of organization in perceptual forms], pp. 301–350. Psychologische Forschung (1923)
Wexler, Y., Shechtman, E., Irani, M.: Space-time completion of video. IEEE Trans. PAMI 29(3), 463–476 (2007)
Williams, L.R., Jacobs, D.W.: Stochastic completion fields: a neural model of illusory contour shape and salience. Neural Comput. 9(4), 837–858 (1997)
Acknowledgments
The first, second and fifth authors acknowledge partial support by MICINN Project, Reference MTM2012-30772, and by GRC Reference 2014 SGR 1301, Generalitat de Catalunya. The third author is supported by a Beatriu de Pinós fellowship (Marie-Curie COFUND action).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Oliver, M., Haro, G., Dimiccoli, M. et al. A Computational Model for Amodal Completion. J Math Imaging Vis 56, 511–534 (2016). https://doi.org/10.1007/s10851-016-0652-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-016-0652-x
Keywords
- Perception
- Visual completion
- Disocclusion
- Bayesian model
- Relatability
- Euler elastica