Skip to main content
Log in

A Cahn–Hilliard System with a Fidelity Term for Color Image Inpainting

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we propose a model for multi-color image inpainting composed of n colors. In particular, as in the binary model, i.e., the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation (Bertozzi et al. in IEEE Trans Image Proc 16:285–291, 2007, Multiscale Model Simul 6:913–936, 2007), we add a fidelity term to the corresponding Cahn–Hilliard system. We are interested in the study of the asymptotic behavior, in terms of finite-dimensional attractors, of the dynamical system associated with the problem. The main difficulty here is that we no longer have the conservation of mass, i.e., of the spatial average of the order parameter c, as in the Cahn–Hilliard system. Instead, we prove that the spatial average of c is dissipative. We finally give numerical simulations which confirm and extend previous ones on the efficiency of the binary model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bates, P.W., Fife, P.C.: The dynamics of nucleation for the Cahn–Hilliard equation. SIAM J. Appl. Math. 53, 990–1008 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertalmio, M., Sapiro, G., Casselles, V., Ballester, C.: Image inpainting. In: Akeley, K. (ed.) Siggraph 2000, Computer Graphics Proceedings, pp. 417–424. ACM Press/Addison-Wesley, New York (2000)

  3. Bertalmio, M., Bertozzi, A., Sapiro, G.: Navier–Stokes, fluid dynamics, and image and video inpainting. Proc. IEEE Comput. Vis. Pattern Recognit. 1, 335–362 (2001)

    Google Scholar 

  4. Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Proc. 16, 285–291 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertozzi, A., Esedoglu, S., Gillette, A.: Analysis of a two-scale Cahn–Hilliard model for binary image inpainting. Multiscale Model. Simul. 6, 913–936 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bosch, J., Stoll, M.: A fractional inpainting model based on the vector-valued Cahn–Hilliard equation (preprint)

  7. Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn–Hilliard inpainting. SIAM J. Image Sci. 7, 67–97 (2013)

    Article  MathSciNet  Google Scholar 

  8. Boyer, F., Lapuerta, C.: Study of a three component Cahn–Hilliard flow model, M2AN. Model. Math. Anal. Numer. 40, 653–687 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Braverman, C.: Photoshop Retouching Handbook. IDG Books Worldwide, Foster City (1998)

    Google Scholar 

  10. Burger, M., He, L., Schönlieb, C.: Cahn–Hilliard inpainting and a generalization for grayvalue images. SIAM J. Image Sci. 3, 1129–1167 (2009)

    Article  Google Scholar 

  11. Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and cuvature-based inpainting. SIAM J. Appl. Math. 63, 564–592 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Chan, T.F., Shen, J., Zhou, H.M.: Total variation wavelet inpainting. J. Math. Imaging Vis. 25, 107–125 (2006)

    Article  MathSciNet  Google Scholar 

  13. Chan, T.F., Shen, J.: Variationnal restoration of nonflat image features: models and algorithms. SIAM J. Appl. Math. 61, 1338–1361 (2001)

    Article  MathSciNet  Google Scholar 

  14. Chan, T.F., Shen, J.: Mathematical models of local nontexture inpaintings. SIAM J. Appl. Math. 62, 1019–1043 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chan, T.F., Shen, J.: Variationnal image inpainting. Commun. Pure Appl. Math. 58, 579–619 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cherfils, L., Fakih, H., Miranville, A.: On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci. 8, 1123–1140 (2015)

  17. Cherfils, L., Miranville, A., Zelik, S.: On a generalized Cahn–Hilliard equation with biological applications. Discrete Contin. Dyn. Syst. B 19, 2013–2026 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cherfils, L., Fakih, H., Miranville, A.: Finite-dimensional attractors for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation in image inpainting. Inverse Probl. Imaging 9, 105–125 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  19. Conti, M., Gatti, S., Miranville, A.: Multi-component Cahn–Hilliard systems with dynamic boundary conditions. Nonlinear Anal. Ser. B 25, 137–166 (2015)

  20. Dobrosotskaya, J.A., Bertozzi, A.: A Wavelet–Laplace variational technique for image deconvolution and inpainting. Trans. Image Proc. 17, 657–663 (2008)

    Article  MathSciNet  Google Scholar 

  21. Dolcetta, I.C., Vita, S.F., March, R.: Area-preserving curve-shortening flows: from phase separation to image processing. Interfaces Free Bound 4, 325–343 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Expenential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics, vol. 37. John-Wiley, New York (1994)

    Google Scholar 

  23. Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a nonlinear reaction–diffusion system in \(\mathbb{R}^{3}\). C.R. Acad. Sci. Paris Sér. I Math. 330, 713–718 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a singularly perturbed Cahn–Hilliard system. Math. Nachr. 272, 11–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Elliott, C.M., Luckhaus, S.: A generalised diffusion equation for phase separation of a multicomponent mixture with interfacial free energy, SFB256 University of Bonn. Preprint 195 (1991)

  26. Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Mathematical Models for Phase Change Problems, pp. 35–73. Birkhäuser, Basel (1989)

  27. Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54, 575–590 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Emile-Male, G.: The Restorer’s Handbook of Easel Painting. Van Nostrand Reinhold, New York (1976)

    Google Scholar 

  29. Esedoglu, S., Shen, J.: Digital inpainting based on the Mumford–Shah–Euler image model. Eur. J. Appl. Math. 13, 353–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Eyre, J.D.: Systems of Cahn–Hilliard equations. SIAM J. Appl. Math. 53, 1686–1712 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. FreeFem++ is freely. http://www.freefem.org/ff++

  32. Garcke, H., Nestler, B., Stoth, B.: On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Phys. D 115, 87–108 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Grasselli, M., Pierre, M.: A splitting method for the Cahn–Hilliard equation with inertial term. Math. Models Methods Appl. Sci. 20, 1–28 (2010)

    Article  MathSciNet  Google Scholar 

  34. Injrou, S., Pierre, M.: Stable discretizations of the Cahn–Hilliard–Gurtin equations. Discrete Contin. Dyn. Syst. 22, 1065–1080 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. King, D.: The Commissar Vanishes. Henry Holt and Company, New York (1997)

    Google Scholar 

  36. Kokaram, A.C.: Motion Picture Restoration: Digital Algorithms for Artefact Suppression in Degraded Motion Picture Film and Video. Springer Verlag, New York (1998)

    Book  Google Scholar 

  37. Li, D., Zhong, C.: Global attractor for the Cahn–Hilliard system with fast growing nonlinearity. J. Differ. Equ. 149, 191–210 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings of the 5th IEEE International Conference on Image Processing, vol. 3, pp. 259–263 (1998)

  39. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations, Evolutionary Partial Differential Equations, vol. 4, pp. 103–200. Elsevier, Amsterdam (2008)

    Google Scholar 

  40. Novick-Cohen, A., Segel, L.A.: Nonlinear aspects of the Cahn–Hilliard equation. Phys. D 10, 277–298 (1984)

    Article  MathSciNet  Google Scholar 

  41. Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings of the 1st IEEE ICIP, vol 1, pp. 259–268 (1994)

  42. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  43. Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77, 183–197 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  44. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer-Verlag, New York (1997)

  45. Tsai, A., Yezzi, J.A., Willsky, A.S.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. Trans. Image Proc. 10, 1169–1186 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the referees for their careful reading of the article and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Miranville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherfils, L., Fakih, H. & Miranville, A. A Cahn–Hilliard System with a Fidelity Term for Color Image Inpainting. J Math Imaging Vis 54, 117–131 (2016). https://doi.org/10.1007/s10851-015-0593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0593-9

Keywords

Mathematics Subject Classification

Navigation