Skip to main content
Log in

Affine Shape Alignment Using Covariant Gaussian Densities: A Direct Solution

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose a novel approach for the estimation of 2D affine transformations aligning a planar shape and its distorted observation. The exact transformation is obtained as a least-squares solution of a linear system of equations constructed by fitting Gaussian densities to the shapes which preserve the effect of the unknown transformation. In the case of compound shapes, we also propose a robust and efficient numerical scheme achieving near real-time performance. The method has been tested on synthetic as well as on real images. Its robustness in the case of segmentation errors, missing data, and modelling error has also been demonstrated. The proposed method does not require point correspondences nor the solution of complex optimization problems, has linear time complexity and provides an exact solution regardless of the magnitude of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For a given set of point coordinates \(\{\mathbf{x}_i\}_{i=1}^n\) the sample mean vector is calculated as \(\varvec{\mu }=\frac{1}{n}\sum _{i=1}^n\mathbf{x}_i\) and the covariance matrix is given by \(\varvec{\varSigma }=\frac{1}{n}\mathbf{X}\mathbf{X}^T\), where \(\mathbf{X}=\begin{bmatrix} \mathbf{x}_1-\varvec{\mu }&\cdots&\mathbf{x}_n-\varvec{\mu } \end{bmatrix}\).

  2. The float arithmetic is inherently the most precise in the \([-1,1]\) interval. Therefore, in order to increase the numerical stability, we transform all the point coordinates into that interval, hence the power of those numbers will also remain in the \([-1,1]\) interval.

References

  1. Aguiar, P.M.Q.: Unsupervised simultaneous registration and exposure correction. In: Proceedings of International Conference on Image Processing, pp. 361–364. IEEE, Atlanta, GA, USA (2006)

  2. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

    Article  Google Scholar 

  3. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape context. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  4. Bentolila, J., Francos, J.M.: Affine consistency graphs for image representation and elastic matching. In: Proceedings of International Conference on Image Processing, pp. 2365–2368. IEEE, Lake Buena Vista, FL, USA (2012)

  5. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vis. 89(2–3), 266–286 (2010)

    Article  Google Scholar 

  7. Domokos, C., Kato, Z.: Binary image registration using covariant Gaussian densities. In: Campilho, A., Kamel, M. (eds.) Proceedings of International Conference on Image Analysis and Recognition. Lecture Notes in Computer Science, vol. 5112, pp. 455–464. Springer, Póvoa de Varzim (2008)

    Chapter  Google Scholar 

  8. Domokos, C., Kato, Z.: Affine alignment of compound objects: A direct approach. In: Proceedings of International Conference on Image Processing, pp. 169–172. IEEE, Cairo, Egypt (2009)

  9. Domokos, C., Kato, Z.: Parametric estimation of affine deformations of planar shapes. Pattern Recognit. 43(3), 569–578 (2010)

    Article  MATH  Google Scholar 

  10. Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21(13), 1145–1153 (2003)

    Article  Google Scholar 

  11. Flusser, J., Suk, T.: A moment-based approach to registration of images with affine geometric distortion. IEEE Trans. Geosci. Remote Sens. 32(2), 382–387 (1994)

    Article  Google Scholar 

  12. Foulonneau, A., Charbonnier, P., Heitz, F.: Multi-reference shape priors for active contours. Int. J. Comput. Vis. 81(1), 68–81 (2009)

    Article  Google Scholar 

  13. Govindu, V., Shekhar, C.: Alignment using distributions of local geometric properties. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 1031–1043 (1999)

    Article  Google Scholar 

  14. Hagege, R., Francos, J.M.: Parametric estimation of multi-dimensional affine transformations:an exact linear solution. Proceedings of International Conference on Acoustics. Speech, and Signal Processing, vol. 2, pp. 861–864. IEEE, Philadelphia, PA, USA (2005)

  15. Hagege, R., Francos, J.M.: Linear estimation of sequences of multi-dimensional affine transformations. Proceedings of International Conference on Acoustics. Speech, and Signal Processing, vol. 2, pp. 785–788. IEEE, Toulouse, France (2006)

  16. Hagege, R., Francos, J.M.: Parametric estimation of affine transformations: an exact linear solution. J. Math. Imaging Vis. 37(1), 1–16 (2010)

    Article  MathSciNet  Google Scholar 

  17. Heikkilä, J.: Pattern matching with affine moment descriptors. Pattern Recognit. 37(9), 1825–1834 (2004)

    Article  MATH  Google Scholar 

  18. Hjouj, F., Kammler, D.W.: Identification of reflected, scaled, translated, and rotated objects from their Radon projections. IEEE Trans. Image Process. 17(3), 301–310 (2008)

    Article  MathSciNet  Google Scholar 

  19. Ho, J., Yang, M.H., Rangarajan, A., Vemuri, B.: A new affine registration algorithm for matching 2D point sets. In: Proceedings of Workshop on Applications of Computer Vision, pp. 25–31. IEEE, Austin, TX, USA (2007)

  20. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  21. Jian, B., Vemuri, B.C.: A robust algorithm for point set registration using mixture of Gaussians. In: Proceedings of International Conference on Computer Vision, vol. 2, pp. 1246–1251. IEEE, Beijing, China (2005)

  22. Jian, B., Vemuri, B.C.: Robust point set registration using Gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2011)

    Article  Google Scholar 

  23. Kadyrov, A., Petrou, M.: Affine parameter estimation from the trace transform. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1631–1645 (2006)

    Article  Google Scholar 

  24. Kannala, J., Rahtu, E., Heikkilä, J., Salo, M.: A new method for affine registration of images and point sets. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) Proceedings of Scandinavian Conference on Image Analysis. Lecture Notes in Computer Science, vol. 3540, pp. 224–234. Springer, Joensuu (2005)

  25. Kim, J., Fessler, J.A.: Intensity-based image registration using robust correlation coefficients. IEEE Trans. Med. Imaging 23(11), 1430–1444 (2004)

    Article  Google Scholar 

  26. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Article  Google Scholar 

  27. Manay, S., Cremers, D., Hong, B.W., Yezzi Jr, A.J., Soatto, S.: Integral invariants for shape matching. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1602–1618 (2006)

    Article  Google Scholar 

  28. Mann, S., Picard, R.W.: Video orbits of the projective group a simple approach to featureless estimation of parameters. IEEE Trans. Image Process. 6(9), 1281–1295 (1997)

    Article  Google Scholar 

  29. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  30. McNeill, G., Vijayakumar, S.: Hierarchical procrustes matching for shape retrieval. In: Werner, B. (ed.) Proceedings of Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 885–894. IEEE, New York, NY, USA (2006)

  31. Musse, O., Heitz, F., Armspach, J.P.: Topology preserving deformable image matching using constrained hierarchical parametric models. IEEE Trans. Image Process. 10(7), 1081–1093 (2001)

    Article  MATH  Google Scholar 

  32. Myronenko, A., Song, X., Carreira-Perpiñán, M.A.: Non-rigid point set registration: Coherent point drift. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Proceedings of Conference on Neural Information Processing Systems, pp. 1009–1016. MIT Press, Vancouver (2006)

    Google Scholar 

  33. Prieto, M.S., Allen, A.R.: Using self-organising maps in the detection and recognition of road signs. Image Vis. Comput. 27(6), 673–683 (2009)

    Article  Google Scholar 

  34. Rahtu, E., Salo, M., Heikkilä, J., Flusser, J.: Generalized affine moment invariants for object recognition. In: Proceedings of International Conference on Pattern Recognition, vol. 2, pp. 634–637. IEEE, Hong-Kong, China (2006)

  35. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Full and partial symmetries of non-rigid shapes. Int. J. Comput. Vis. 89(1), 19–39 (2010)

    Article  Google Scholar 

  36. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. Image Vis. Comput. 25(5), 578–596 (2007)

    Article  Google Scholar 

  37. Simonson, K.M., Drescher, S.M., Tanner, F.R.: A statistics-based approach to binary image registration with uncertainty analysis. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 112–125 (2007)

    Article  Google Scholar 

  38. Suk, T., Flusser, J.: Affine normalization of symmetric objects. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) Proceedings of International Conference on Advanced Concepts for Intelligent Vision Systems. Lecture Notes in Computer Science, vol. 3708, pp. 100–107. Springer, Antwerp (2005)

    Chapter  Google Scholar 

  39. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  40. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

    Article  Google Scholar 

  41. Zhang, Y., Wen, C., Zhang, Y.: Recognition of symmetrical images using affine moment invariants in both frequency and spatial domains. Pattern Anal. Appl. 5(3), 316–325 (2002)

    Article  MathSciNet  Google Scholar 

  42. Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Hungarian Scientific Research Fund—OTKA K75637, a PhD Fellowship of the University of Szeged, Hungary and by the European Union and the State of Hungary, co-financed by the European Social Fund through Project TAMOP–4.2.4.A/2-11-1-2012–0001 National Excellence Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Kato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domokos, C., Kato, Z. Affine Shape Alignment Using Covariant Gaussian Densities: A Direct Solution. J Math Imaging Vis 51, 385–399 (2015). https://doi.org/10.1007/s10851-014-0530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0530-3

Keywords

Navigation